我简单的描述一下题目,题目中所说的有道路和航路:

1.公路是双向的,航路是单向的;

2.公路是正值,航路可正可负;

每一条公路i或者航路i表示成连接城镇Ai(1<=A_i<=T)和Bi(1<=Bi<=T)代价为Ci;每一条公路,Ci的范围为0<=Ci<=10,000;

由于奇怪的运营策略,每一条航路的Ci可能为负的,也就是-10,000<=Ci<=10,000。

数据规模与约定

对于20%的数据,T<=100,R<=500,P<=500;

对于30%的数据,R<=1000,R<=10000,P<=3000;

对于100%的数据,1<=T<=25000,1<=R<=50000,1<=P<=50000。

输入格式

输入的第一行包含四个用空格隔开的整数T,R,P,S。(表示共有T个城镇,R条公路,P条航路,求S点到所有城镇的最短路)

接下来R行,描述公路信息,每行包含三个整数,分别表示Ai,Bi和Ci

接下来P行,描述航路信息,每行包含三个整数,分别表示Ai,Bi和Ci

输出格式
输出T行,分别表示从城镇S到每个城市的最小花费,如果到不了的话输出NO PATH。
样例输入
6 3 3 4
1 2 5
3 4 5
5 6 10
3 5 -100
4 6 -100
1 3 -10
样例输出
NO PATH
NO PATH
5
0
-95
-100
讲解:如果数据量比较少的话,很多方法都能做啦,什么Dijkstra,Bellman-ford,Floyd,都能简单的解决了,但是要想得满分,这道题目的数据量太大了,我直接套用的spfa   的模板直接过了,模板不错的,还能保存路径的;
 #include<algorithm>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
const int MAXN = ;
const int INF=0x7FFFFFFF;
struct edge
{
int to,weight;
};
int T,R,P,S;
vector<edge>adjmap[MAXN];//邻接表
bool in_queue[MAXN];//顶点是否在队列中
int in_sum[MAXN];//顶点入队的次数
int dist[MAXN];//源点到各点的最短路
int path[MAXN];//存储到达i的前一个顶点
int nodesum; //顶点数
int edgesum; //边数
bool spfa(int source)
{
deque< int > dq;
int i,j,x,to;
for(int i = ;i<=T;i++)//初始化函数
{
in_sum[i]= ;
in_queue[i]=false;
dist[i]=INF;
path[i]=-;
}
dq.push_back(source);
in_sum[source]++;
dist[source]=; //到达本身的最短距离为0
in_queue[source]= true;
while(!dq.empty())
{
x = dq.front();
dq.pop_front();
in_queue[x]=false;
for(int i = ;i<adjmap[x].size();i++)
{
to = adjmap[x][i].to;
if((dist[x]<INF) && ( dist[to]>dist[x]+adjmap[x][i].weight) )
{
dist[to] = dist[x]+adjmap[x][i].weight;
path[to] = x;
if(!in_queue[to])
{
in_queue[to] = true;
in_sum[to]++;
if(in_sum[to] == nodesum) return false;
if(!dq.empty())
{
if(dist[to]>dist[dq.front()]) dq.push_back(to);
else dq.push_front(to);
} else dq.push_back(to);
}
}
}
}
return true;
}
void print_path(int x)
{
//输出最小的花费
if(dist[x] == INF)//到不了的路径
cout<<"NO PATH"<<endl;
else cout<<dist[x]<<endl; // 下面是输出路径
// stack<int>s;
// int w = x;
// while(path[w]!=-1)
// {
// s.push(w);
// w=path[w];
// }
// //以下是经过的路径
// while(!s.empty())
// {
// cout<<s.top()<<" ";
// s.pop();
// }
// cout<<endl;
}
int main()
{ edge temp;
int s,e,w;
scanf("%d %d %d %d",&T,&R,&P,&S);
for(int i = ;i<T;i++)
adjmap[i].clear();//清空邻接表
for(int i = ; i<=R; i++)
{
scanf("%d %d %d",&s,&e,&w);
temp.to = e;
temp.weight = w;
adjmap[s].push_back(temp);
temp.to = s;
adjmap[e].push_back(temp);// 公路的是双向的,需要放入两次
}
for(int i = ;i<=P;i++)
{
scanf("%d %d %d",&s,&e,&w);
temp.to = e;
temp.weight = w;
adjmap[s].push_back(temp);
}
if(spfa(S))
{
for(int i =;i<=T; i++ )
print_path(i);
}
// else cout<<"图中存在负权回路"<<endl;
return ;
}

算法提高 道路和航路 SPFA 算法的更多相关文章

  1. 算法笔记_165:算法提高 道路和航路(Java)

    目录 1 问题描述 2解决方案   1 问题描述 问题描述 农夫约翰正在针对一个新区域的牛奶配送合同进行研究.他打算分发牛奶到T个城镇(标号为1..T),这些城镇通过R条标号为(1..R)的道路和P条 ...

  2. Java实现 蓝桥杯 算法提高 道路和航路

    问题描述 农夫约翰正在针对一个新区域的牛奶配送合同进行研究.他打算分发牛奶到T个城镇(标号为1-T),这些城镇通过R条标号为(1-R)的道路和P条标号为(1-P)的航路相连. 每一条公路i或者航路i表 ...

  3. [hihoCoder] #1093 : 最短路径·三:SPFA算法

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 万圣节的晚上,小Hi和小Ho在吃过晚饭之后,来到了一个巨大的鬼屋! 鬼屋中一共有N个地点,分别编号为1..N,这N个地点之 ...

  4. 图论——最短路:Floyd,Dijkstra,Bellman-Ford,SPFA算法及最小环问题

    一.Floyd算法 用于计算任意两个节点之间的最短路径. 参考了five20的博客 Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个 ...

  5. SPFA算法学习笔记

    一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...

  6. 最短路径--SPFA 算法

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...

  7. 算法提高 金属采集_树形dp

    算法提高 金属采集   时间限制:1.0s   内存限制:256.0MB        问题描述 人类在火星上发现了一种新的金属!这些金属分布在一些奇怪的地方,不妨叫它节点好了.一些节点之间有道路相连 ...

  8. 算法笔记_166:算法提高 金属采集(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 人类在火星上发现了一种新的金属!这些金属分布在一些奇怪的地方,不妨叫它节点好了.一些节点之间有道路相连,所有的节点和道路形成了一棵树.一共 ...

  9. 算法笔记_071:SPFA算法简单介绍(Java)

    目录 1 问题描述 2 解决方案 2.1 具体编码   1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个 ...

随机推荐

  1. 如何解决weblogic server启动中在IIOP后运行缓慢

    WebLogic Server在Linux环境中,有时因为linux OS的安全包没有安装,导致weblogic server 在启动的时候会在长时间的停留在 <2/07/2009 08:54: ...

  2. go语言基础之iota枚举

    1.iota (在常量的时候,当成枚举使用) 示例1 package main import "fmt" func main() { //1.iota常量自动生成器,每个一行,自动 ...

  3. ActiveMQ订阅模式持久化实现

    实现步骤:1.配置发送xml,applicationContext-send.xml <?xml version="1.0" encoding="UTF-8&quo ...

  4. java 过滤器(自己的理解)

    filter继承javax.servlet.* 必须实现doFilter方法 chain.doFilter(request, response);这句话必须写在doFilter方法内部(以便调用其他的 ...

  5. web页面内容优化管理与性能技巧

    来源:GBin1.com 回 想一下,以前我们不得不花费大量时间去优化页面内容(图片.CSS等等),如今用户有更快速的互联网链接,我们似乎能够使用更大的图像或更大的闪 存文件,里面包含的有视频或者图片 ...

  6. Android开发--用户定位服务--UserLocation

    Android开发--用户定位服务--UserLocation 2013-01-28 08:32:26     我来说两句      作者:BruceZhang 收藏    我要投稿 [java] & ...

  7. keepalived 配置需要注意的问题

    keepalived 配置过程中遇到了一些问题,做个记录: 1.selinux的影响:keepalived配置了vrrp_script脚本总是无效      注:脚本返回值0代表成功,1或其他非0值代 ...

  8. Win7如何开机直接进桌面

    运行CONTROL USERPASSWORDS2 取消登陆要密码那项后再点应用,直接输入密码下次就能自己登陆进入桌面啦

  9. 小白系列-免费广告路由器web认证设置(2)

    要设置认证页面图片.须要到后台注冊一个帐号,绑定路由器. 路由器管理后台网址 http://115.29.12.130/router 第一步:自己主动获取一个路由器ID(上一篇文章中的路由器ID也要改 ...

  10. 深入理解linux系统的目录结构

    对于每一个Linux学习者来说,了解Linux文件系统的目录结构,是学好Linux的至关重要的一步.,深入了解linux文件目录结构的标准和每个目录的详细功能,对于我们用好linux系统只管重要,下面 ...