How many integers can you find

Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 6434    Accepted Submission(s): 1849

Problem Description
  Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10},
all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
 
Input
  There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
 
Output
  For each case, output the number.
 
Sample Input
12 2
2 3
 
Sample Output

7

这道题目是给定了因子,而且还不是互质的,

所以在容斥原理上,就不能简单想乘,要求最小公倍数LCM

另外有可能因子为0
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <math.h> using namespace std;
typedef long long int LL;
LL gcd(LL a,LL b)
{
return b?gcd(b,a%b):a;
}
LL ans,a[15],n,m;
void dfs(int id,int flag,int lcm)
{
lcm=a[id]/gcd(a[id],lcm)*lcm;
if(flag)
ans+=n/lcm;
else
ans-=n/lcm;
for(int i=id+1;i<m;i++)
dfs(i,!flag,lcm);
}
int main()
{
while(cin>>n>>m)
{
n--;
for(int i=0;i<m;i++)
{
scanf("%d",&a[i]);
if(!a[i]) i--,m--;
}
ans=0;
for(int i=0;i<m;i++)
dfs(i,1,a[i]);
printf("%lld\n",ans);
}
return 0;
}

HDU 1796 How many integers can you find(容斥原理)的更多相关文章

  1. HDU 1796 How many integers can you find(容斥原理)

    题意 就是给出一个整数n,一个具有m个元素的数组,求出1-n中有多少个数至少能整除m数组中的一个数 (1<=n<=10^18.m<=20) 题解 这题是容斥原理基本模型. 枚举n中有 ...

  2. HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举)

    HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举) 题意分析 求在[1,n-1]中,m个整数的倍数共有多少个 与 UVA.10325 ...

  3. HDU 1796 How many integers can you find (状态压缩 + 容斥原理)

    题目链接 题意 : 给你N,然后再给M个数,让你找小于N的并且能够整除M里的任意一个数的数有多少,0不算. 思路 :用了容斥原理 : ans = sum{ 整除一个的数 } - sum{ 整除两个的数 ...

  4. HDU 1796 How many integers can you find(容斥原理)

    题目传送:http://acm.hdu.edu.cn/diy/contest_showproblem.php?cid=20918&pid=1002 Problem Description    ...

  5. HDU 1796 How many integers can you find 容斥入门

    How many integers can you find Problem Description   Now you get a number N, and a M-integers set, y ...

  6. hdu 1796 How many integers can you find 容斥定理

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  7. HDU 1796 How many integers can you find(容斥原理+二进制/DFS)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  8. hdu 1796 How many integers can you find 容斥第一题

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  9. hdu 1796 How many integers can you find

    容斥原理!! 这题首先要去掉=0和>=n的值,然后再使用容斥原理解决 我用的是数组做的…… #include<iostream> #include<stdio.h> #i ...

随机推荐

  1. nginx-1.2.7+tcp_proxy_module负载均衡配置

    对于安装方面不清楚的,可移步 nginx + tcp_proxy_module的安装 参考nginx_tcp_proxy_module的readme文件,对每个定义项都做了详细的描述,tcp{...} ...

  2. 点滴积累【JS】---JS小功能(JS实现模仿微博发布效果)

    效果: 思路: 利用多功能浮动运动框架实现微博效果,首先,将textarea中的属性添加到新创建的li里面然后,再将li添加到ul里面,再利用浮动运动框架将数据动态的显示出来. 代码: <hea ...

  3. spring boot +mybatis+druid 多数据源配置

    因为我的工程需要在两个数据库中操作数据,所以要配置两个数据库,我这里没有数据源没有什么主从之分,只是配合多数据源必须要指定一个主数据源,所以我就把 操作相对要对的那个数据库设置为主数据(dataBas ...

  4. Cannot change version of project facet Dynamic Web Module to 3.0 requires Java 1.6 or newer 解决方案

    Eclipse Maven 开发一个 jee 项目时,编译时遇到以下错误:Description Resource Path Location TypeDynamic Web Module 3.0 r ...

  5. pycharm 社区版

    这个是免费版.到3.1.13 http://pan.baidu.com/s/1bnvPdtt 没用过idea的商业版,不知道为什么它的更新那么蛋疼,不能增量更新,每次都得手动下载完整的压缩包.

  6. (转)64位开源处理器Rocket的源代码简单介绍

    转载地址: http://blog.csdn.net/leishangwen/article/details/46604819 最近大概阅读了一下UCB发布的Rocket处理器的源码,对源代码各个文件 ...

  7. 微信公众号实现zaabix报警2017脚本(升级企业微信后)

    #!/bin/bash CropID='xxxxxxxxxxxxxxxxx' Secret='xxxxxxxxxxxxxxxx' GURL="https://qyapi.weixin.qq. ...

  8. CI和CD的意思

    openstack中CI和CD的意思: 持续集成(CI)和持续交付(CD)

  9. socket文件权限变更引起crs无法启动故障

    Crs无法正常启动,也无法关闭.[root@rac101 ~]# crsctl stop crsStopping resources. This could take several minutes. ...

  10. IPOL图像处理分析经典在线(文献+源码)

    网址: IPOL Journal · Image Processing On Line https://www.ipol.im/ 分类: 搜索: 下载文献和源码: NLM算法:IPOL Journal ...