机器学习:K-近邻算法(KNN)

一、KNN算法概述

KNN作为一种有监督分类算法,是最简单的机器学习算法之一,顾名思义,其算法主体思想就是根据距离相近的邻居类别,来判定自己的所属类别。算法的前提是需要有一个已被标记类别的训练数据集,具体的计算步骤分为一下三步:
1、计算测试对象与训练集中所有对象的距离,可以是欧式距离、余弦距离等,比较常用的是较为简单的欧式距离;
2、找出上步计算的距离中最近的K个对象,作为测试对象的邻居;
3、找出K个对象中出现频率最高的对象,其所属的类别就是该测试对象所属的类别。
 

二、算法优缺点

1、优点

思想简单,易于理解,易于实现,无需估计参数,无需训练;
适合对稀有事物进行分类;
特别适合于多分类问题。

2、缺点

懒惰算法,进行分类时计算量大,要扫描全部训练样本计算距离,内存开销大,评分慢;
当样本不平衡时,如其中一个类别的样本较大,可能会导致对新样本计算近邻时,大容量样本占大多数,影响分类效果;
可解释性较差,无法给出决策树那样的规则。

三、注意问题

1、K值的设定
K值设置过小会降低分类精度;若设置过大,且测试样本属于训练集中包含数据较少的类,则会增加噪声,降低分类效果。
通常,K值的设定采用交叉检验的方式(以K=1为基准)
经验规则:K一般低于训练样本数的平方根。
2、优化问题
压缩训练样本;
确定最终的类别时,不是简单的采用投票法,而是进行加权投票,距离越近权重越高。
 

四、python中scikit-learn对KNN算法的应用

#KNN调用
import numpy as np
from sklearn import datasets
iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target
np.unique(iris_y)
# Split iris data in train and test data
# A random permutation, to split the data randomly
np.random.seed(0)
# permutation随机生成一个范围内的序列
indices = np.random.permutation(len(iris_X))
# 通过随机序列将数据随机进行测试集和训练集的划分
iris_X_train = iris_X[indices[:-10]]
iris_y_train = iris_y[indices[:-10]]
iris_X_test = iris_X[indices[-10:]]
iris_y_test = iris_y[indices[-10:]]
# Create and fit a nearest-neighbor classifier
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(iris_X_train, iris_y_train) KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform')
knn.predict(iris_X_test)
print iris_y_test
 

KNeighborsClassifier方法中含有8个参数(以下前两个常用):

n_neighbors : int, optional (default = 5):K的取值,默认的邻居数量是5;
weights:确定近邻的权重,“uniform”权重一样,“distance”指权重为距离的倒数,默认情况下是权重相等。也可以自己定义函数确定权重的方式;
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'},optional:计算最近邻的方法,可根据需要自己选择;
leaf_size : int, optional (default = 30)
 |      Leaf size passed to BallTree or KDTree.  This can affect the
 |      speed of the construction and query, as well as the memory
 |      required to store the tree.  The optimal value depends on the
 |      nature of the problem.
 |  
 |  metric : string or DistanceMetric object (default = 'minkowski')
 |      the distance metric to use for the tree.  The default metric is
 |      minkowski, and with p=2 is equivalent to the standard Euclidean
 |      metric. See the documentation of the DistanceMetric class for a
 |      list of available metrics.
 |  
 |  p : integer, optional (default = 2)
 |      Power parameter for the Minkowski metric. When p = 1, this is
 |      equivalent to using manhattan_distance (l1), and euclidean_distance
 |      (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
 |  
 |  metric_params: dict, optional (default = None)
 |      additional keyword arguments for the metric function.
输出结果:
 
结果一致。

--------------------------------------------------------------------------------------------------------------------------------------

一、简介

简单地说,k-近邻算法采用测量不同特征值之间的距离方法进来分类 
特点:

  • 优点:精度高、对异常值不敏感、无数据输入假定
  • 缺点:计算复杂度高、空间复杂度高
  • 适用数据范围:数值型和标称型

k-近邻算法称为kNN,它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前κ个最相似的数据,这就是k-近邻算法中κ的出处。通常κ是不大于20的整数。最后,选择κ个最相似数据出现次数最多的分类,作为新数据的分类。

二、示例

电影分类。 
样本数据:

电影名称 打斗镜头 接吻镜头 电影类型
California Man 3 104 爱情片
He’s Not Really into Dudes 2 100 爱情片
Beautiful woman 1 81 爱情片
Kevin Longblade 101 10 动作片
Robo Slayer 3000 99 5 动作片
Amped II 98 22 动作片
? 18 90 未知

如果我们计算出已知电影与未知电影的距离:

电影名称 与未知电影的距离
California Man 20.5
He’s Not Really into Dudes 18.7
Beautiful woman 19.2
Kevin Longblade 115.3
Robo Slayer 3000 117.4
Amped II 118.9

按照距离递增排序,可以找到k个距离最近的电影。假定k=3,则三个最靠近的电影依次是:

  1. He’s Not Really into Dudes
  2. Beautiful woman
  3. California Man

kNN按照距离最近的三部电影的类型,决定未知电影的类型——爱情片。

三、Python操作

1. 使用Python导入数据

from numpy import *
import operator def createDataSet():
#用来创建数据集和标签
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group , labels

这里有4组数据,每组数据有两个我们已知的属性或者特征值。向量labels包含了每个数据点的标签信息,labels包含的元素个数等于group矩阵行数。这里将数据点(1,1.1)定义为类A,数据点(0,0.1)定义为类B。为了说明方便,例子中的数值是任意选择的,并没有给出轴标签。 
 
kNN,带有4个数据点的简单例子。

2. 实施kNN分类算法

代码流程为: 
计算已知类别数据集中的每个点依次执行以下操作

  1. 计算已知类别数据集中的点与当前点之间的距离
  2. 按照距离递增次序排序
  3. 选择与当前点距离最小的κ个点
  4. 确定前κ个点所在类别的出现概率
  5. 返回前κ个点出现频率最高的类别作为当前点的预测分类

classify0函数:

def classify0(inX,dataSet,labels,k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX,(dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0)+1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]

参数说明:

  • inX:用于分类的输入向量
  • dataSet:输入的训练样本集
  • labels:标签向量
  • k:用于选择最近邻居的数目

其中标签向量的元素数目和矩阵dataSet的行数相同。程序使用的是欧氏距离公式,计算向量xA与xB之间的距离:

 
d=(xA0−xB0)2+(xA1−xB1)2−−−−−−−−−−−−−−−−−−−−−−−−√d=(xA0−xB0)2+(xA1−xB1)2

计算完距离后,对数据按照从小到大排序,确认前k个距离最小元素民在的主要分类。输入k总是正整数;最后,将classCount字典分解为元组列表,然后使用程序第二行导入运算符模块的itemgetter方法,按照第二个元素的次序对元组进行排序,最后返回发生频率最高的元素标签。 
运行测试:

group , labels = createDataSet()
print(classify0([0,0],group,labels,3))

3. 如何测试分类器

错误率是评估常用方法,完美的错误率为0,最差错误率是1.0。

四、示例:使用kNN改进约会网站的配对效果

1.使用Matplotlib创建散点图

准备一份样本数据。

每年获得的飞行常客里程数 玩视频游戏所耗时间百分比 每周消费的冰淇淋公升数
40920 8.326976 0.953952 3
14488 7.153469 1.673904 2
26052 1.441871 0.805124 1
75136 13.147394 0.428964 1
38344 1.669788 0.134296 1
...

代码:

from numpy import *
import operator def classify0(inX,dataSet,labels,k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX,(dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0)+1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0] def file2matrix(filename):
fr = open(filename)
arrayOfLines = fr.readlines()
numberOfLines = len(arrayOfLines)
returnMat = zeros((numberOfLines,3))
classLabelVector = []
index = 0
for line in arrayOfLines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1 datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') import matplotlib
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2])
plt.show()

获得的散点图示例: 

样本数据可以在网上通过搜索”datingTestSet2.txt”获得。这里散点图使用datingDataMat矩阵的第二、第三列数据,分别表示特征值“玩视频游戏所耗时间百分比”和“每周所消费的冰淇淋公升数”。

由于没有使用样本分类的特征值,在图上很难看出任何有用的数据模式信息。一般来说,可以采用色彩或其他的记号来标记不同样本分类,以便更好地理解数据信息。进行这样的修改:

ax.scatter(datingDataMat[:,1],datingDataMat[:,2] ,15.0*array(datingLabels),15.0*array(datingLabels))

利用变量datingLabels存储的类标签属性,在散点图上绘制了色彩不等、尺寸不同的点。

2.准备数据:归一化数值

归一化数值将不同取值范围的特征值进行数值归一化,如将取值范围处理为0到1或者-1到1之间。通过下面公式可以将取值范围特征值转化为0到1区间内的值:

newValue=(oldValue−min)/(max−min)

其中min和max分别是数据集中的最小特征值和最大特征值。虽然改变数值取值范围增加了分类器的复杂度,但为了得到准确结果,我们必须这样做。下面autoNorm()函数实现归一化:

def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals -minVals
nromDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals,(m,1))
normDataSet = normDataSet/tile(ranges,(m,1))
return normDataSet , ranges , minVals normMat , ranges , minVals = autoNorm(datingDataMat)

3.测试算法

通常我们使用已有数据的90%作为训练样本来训练分类器,而使用10%的数据去测试分类器,检测分类器的正确率。创建一个测试函数:

def datingClassTest():
hoRatio = 0.10
datingDataMat , datingLabels = file2matrix('datingTestSet.txt')
normMat,ranges,minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],\
datingLabels[numTestVecs:m],3)
print ("the classifier came back with : %d,the real answer is :%d"\
%(classifierResult,datingLabels[i]))
if(classifierResult != datingLabels[i]):errorCount += 1.0
print ("the total error rate is :%f" % (errorCount / float(numTestVecs)))

使用

normMat , ranges , minVals = autoNorm(datingDataMat)
datingClassTest()

4.补全程序,实现完整功能

def classifyPerson():
resultList = ['not at all','in small doses','in large doses']
percentTats = float(input("percetage of time spent playing video games?"))
ffMiles = float(input("frequent flier miles earned per year?"))
iceCream = float(input("listers of ice cream consumed per year?"))
datinDataMat,datingLabels = file2matrix('datingTestSet2.txt')
normMat,ranges ,minVals=autoNorm(datingDataMat)
inArr = array([ffMiles,percentTats,iceCream])
classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
print ("You will probably like this person:",resultList[classifierResult - 1]) classifyPerson()

运行结果示例: 

==========================================================================

一.基本思想

K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中。如下面的图: 
 
通俗一点来说,就是找最“邻近”的伙伴,通过这些伙伴的类别来看自己的类别。比如以性格和做过的事情为判断特征,和你最邻近的10个人中(这里暂且设k=10),有8个是医生,有2个是强盗。那么你是医生的可能性更加大,就把你划到医生的类别里面去,这就算是K近邻的思想。 
K近邻思想是非常非常简单直观的思想。非常符合人类的直觉,易于理解。 
至此,K近邻算法的核心思想就这么多了。 
K值选择,距离度量,分类决策规则是K近邻法的三个基本要素. 
从K近邻的思想可以知道,K近邻算法是离不开对于特征之间“距离”的表征的.

二.实战

这一部分的数据集《机器学习实战》中的KNN约会分析,代码按照自己的风格改了一部分内容。

首先是读取数据部分(data.py):

import numpy as np 

def creatData(filename):
#打开文件,并且读入整个文件到一个字符串里面
file=open(filename)
lines=file.readlines()
sizeOfRecord=len(lines) #开始初始化数据集矩阵和标签
group=np.zeros((sizeOfRecord,3))
labels=[]
row=0
#这里从文件读取存到二维数组的手法记住
for line in lines:
line=line.strip()
tempList=line.split('\t')
group[row,:]=tempList[:3] labels.append(tempList[-1])
row+=1
return group,labels

然后是KNN算法的模块:KNN.py

import numpy as np
#分类函数(核心)
def classify(testdata,dataset,labels,k):
dataSize=dataset.shape[0]
testdata=np.tile(testdata,(dataSize,1))
#计算距离并且按照返回排序后的下标值列表
distance=(((testdata-dataset)**2).sum(axis=1))**0.5
index=distance.argsort() classCount={}
for i in range(k):
label=labels[index[i]]
classCount[label]=classCount.get(label,0)+1 sortedClassCount=sorted(list(classCount.items()),
key=lambda d:d[1],reverse=True) return sortedClassCount[0][0] #归一化函数(传入的都是处理好的只带数据的矩阵)
def norm(dataset):
#sum/min/max函数传入0轴表示每列,得到单行M列的数组
minValue=dataset.min(0)
maxValue=dataset.max(0) m=dataset.shape[0]
return (dataset-np.tile(minValue,(m,1)))/np.tile(maxValue-minValue,(m,1)) #测试函数
def classifyTest(testdataset,dataset,dataset_labels,
testdataset_labels,k):
sampleAmount=testdataset.shape[0] #归一化测试集合和训练集合
testdataset=norm(testdataset)
dataset=norm(dataset)
#测试
numOfWrong=0
for i in range(sampleAmount):
print("the real kind is:",testdataset_labels[i])
print("the result kind is:",
classify(testdataset[i],dataset,dataset_labels,k))
if testdataset_labels[i]==classify(testdataset[i],
dataset,dataset_labels,k):
print("correct!!")
else:
print("Wrong!!")
numOfWrong+=1
print() print(numOfWrong)

画图模块(drawer.py):

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import data def drawPlot(dataset,labels):
fig=plt.figure(1)
ax=fig.add_subplot(111,projection='3d')
for i in range(dataset.shape[0]):
x=dataset[i][0]
y=dataset[i][1]
z=dataset[i][2]
if labels[i]=='largeDoses':
ax.scatter(x,y,z,c='b',marker='o')
elif labels[i]=='smallDoses':
ax.scatter(x,y,z,c='r',marker='s')
else:
ax.scatter(x,y,z,c='g',marker='^')
plt.show()

测试模块(run.py)

import data
import KNN
import drawer #这里测试数据集和训练数据集都是采用的同一个数据集
dataset,labels=data.creatData("datingTestSet.txt")
testdata_set,testdataset_labels=data.creatData("datingTestSet.txt") print(type(dataset[0][0]))
#测试分类效果。K取得是10
KNN.classifyTest(testdata_set,dataset,labels,testdataset_labels,10) #画出训练集的分布
drawer.drawPlot(dataset,labels)

结果: 

三.优缺点分析

从上面的代码可以看到,K近邻法并不具有显式的学习过程,你必须先把数据集存下来,然后类似于比对的来作比较。K近邻法实际上是利用训练数据集对特征向量空间进行划分,并且作为其分类的模型 
优点:

多数表决规则等价于经验风险最小化. 
精度高,对异常值不敏感,无数据输入假定

缺点:

K值选择太小,意味着整体模型变得复杂,容易发生过拟合.但是K值要是选择过大的话,容易忽略实例中大量有用的信息,也不可取.一般是先取一个比较小的数值,通常采用交叉验证的方式来选取最优的K值. 
计算复杂度高,空间复杂度高

本文摘自:https://blog.csdn.net/xundh/article/details/73611249

     https://blog.csdn.net/helloworld6746/article/details/50817427

     https://blog.csdn.net/xierhacker/article/details/61914468

机器学习:K-近邻算法(KNN)的更多相关文章

  1. k近邻算法(KNN)

    k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection ...

  2. 机器学习(四) 分类算法--K近邻算法 KNN (上)

    一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...

  3. 机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

    六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocess ...

  4. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  5. [机器学习] k近邻算法

    算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 &&am ...

  6. Python3入门机器学习 - k近邻算法

    邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代 ...

  7. 机器学习--K近邻 (KNN)算法的原理及优缺点

    一.KNN算法原理 K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法. 它的基本思想是: 在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对 ...

  8. 《机器学习实战》---第二章 k近邻算法 kNN

    下面的代码是在python3中运行, # -*- coding: utf-8 -*- """ Created on Tue Jul 3 17:29:27 2018 @au ...

  9. k近邻算法(knn)的c语言实现

    最近在看knn算法,顺便敲敲代码. knn属于数据挖掘的分类算法.基本思想是在距离空间里,如果一个样本的最接近的k个邻居里,绝大多数属于某个类别,则该样本也属于这个类别.俗话叫,"随大流&q ...

  10. 最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现

    k-Nearest Neighbors简介 对于该图来说,x轴对应的是肿瘤的大小,y轴对应的是时间,蓝色样本表示恶性肿瘤,红色样本表示良性肿瘤,我们先假设k=3,这个k先不考虑怎么得到,先假设这个k是 ...

随机推荐

  1. 无锁的对象引用:AtomicReference

    http://www.dewen.net.cn/q/9588 首先volatile是java中关键字用于修饰变量,AtomicReference是并发包java.util.concurrent.ato ...

  2. 【转载】PDB命令行调试Python代码

    转载自这里. (博主按:PDB调试python代码和用GDB调试c++代码很类似) 你有多少次陷入不得不更改别人代码的境地?如果你是一个开发团队的一员,那么你遇到上述境地的次数比你想要的还要多.然而, ...

  3. 5.Spark Streaming流计算框架的运行流程源码分析2

    1 spark streaming 程序代码实例 代码如下: object OnlineTheTop3ItemForEachCategory2DB { def main(args: Array[Str ...

  4. Bzoj1101 Zap(莫比乌斯反演)

    题面 Bzoj 题解 先化式子 $$ \sum_{x=1}^a\sum_{y=1}^b\mathbf f[gcd(x,y)==d] \\ = \sum_{x=1}^a\sum_{y=1}^b\sum_ ...

  5. NOIP2017酱油记

    分数线终于出了,于是大胆地写下了这篇博文. 提高组Day1: T1: 打开PDF就感觉到一股骚气,不忘初心什么鬼啊??T1是数论??好一个不忘初心... 看一下样例1:3 7:11 莫不是3*7-10 ...

  6. 洛谷——P1194 买礼物

    P1194 买礼物 题目描述 又到了一年一度的明明生日了,明明想要买B样东西,巧的是,这B样东西价格都是A元. 但是,商店老板说最近有促销活动,也就是: 如果你买了第I样东西,再买第J样,那么就可以只 ...

  7. POJ 3662 Telephone Lines (分层图)

    Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6785   Accepted: 2498 D ...

  8. ubuntu14.04下安装爬虫工具scrapy

    scrapy是目前准备要学习的爬虫框架,其在ubuntu14.04下的安装过程如下: ubuntu14.04下默认安装了2.7的python以及setuptools,若未安装,可通过下面指令安装: s ...

  9. Sd - 数据库开发调优

    尤其是Sql写法上的技巧,以及常见Sql的写法

  10. tomcat服务器上web项目日志存放位置

    1.找到log日志的配置文件:log.xml,或者log.property,找到rollingFile标签,该标签的fileName属性就是更新的日志文件的存放位置.(相对于tomcat的bin目录)