uva10392 Factoring Large Numbers

本文涉及的知识点是,使用线性筛选法得到素数表。

Table of Contents

1 题目

====================

Problem F: Factoring Large Numbers

One of the central ideas behind much cryptography is that factoring large numbers is computationally intensive. In this context one might use a 100 digit number that was a product of two 50 digit prime numbers. Even with the fastest projected computers this factorization will take hundreds of years.

You don't have those computers available, but if you are clever you can still factor fairly large numbers.

Input

The input will be a sequence of integer values, one per line, terminated by a negative number. The numbers will fit in gcc's long long int datatype. You may assume that there will be at most one factor more than 1000000.

Output

Each positive number from the input must be factored and all factors (other than 1) printed out. The factors must be printed in ascending order with 4 leading spaces preceding a left justified number, and followed by a single blank line.

Sample Input

90
1234567891
18991325453139
12745267386521023
-1

Sample Output

    2
3
3
5 1234567891 3
3
13
179
271
1381
2423 30971
411522630413

====================
 

2 思路

这是一个分解质因数问题,因为题目说明了数字不超过long long int表示的数,所以 这不是一个大数问题。基本的思路是首先得到素数表,再用输入的大数对素数表中的 素数依次作除法运算。

关键的地方有两个,一个是素数表的获得。这里使用了线性筛选法,把所有的合数筛去, 关键的思想在于每个合数都是被它的最小素因子筛去的,且只会被筛一次。

关键代码在于:

 if (!i%prime[k]) break;

之所以可以break在于,i可以整除prime[k], 在于下一次循环要筛的数字i*prime[k+1]一定已经被prime[k]筛过了,因为素数表是按大小排列的,prime[k]比prime[k+1]小,而每个合数都是被它最小的素因子筛出去的。

第二个点在于题目中已经说明,最多有一个素因子大于1000000,所以素数表只开到1000000就可以了, 如果遍历完素数表输入的数字还没有变成1,那么,将其最终结果输出就可以了,这个结果 就是那个大于1000000的因子,否则它一定可以被1000000内的素数整除。

3 代码

#include <stdio.h>
#include <string.h> #define N 1000000
long long prime[N];
short is_prime[N]; long long get_prime (long long prime[], long long n) {
long long i, j, k;
memset (is_prime, 0, sizeof(is_prime[0])*n); j = 0;
for (i=2; i<n; i++) {
if (!is_prime[i]) prime[j++] = i;
for (k=0; k<j && i*prime[k]<n; k++) {
is_prime[ i*prime[k] ] = 1;
if (!i%prime[k]) break;
}
} return j;
} int main() {
long long n;
long long i;
long long prime_num; prime_num = get_prime (prime, N); while (scanf ("%lld", &n) != EOF) {
if (n == -1) break; for (i=0; i<prime_num && n!=1; i++) {
while (n % prime[i] == 0) {
printf (" %lld\n", prime[i]);
n /= prime[i];
}
}
if (n != 1) printf (" %lld\n", n);
printf ("\n");
} return 0;
}

uva10392 Factoring Large Numbers的更多相关文章

  1. [Typescript] Improve Readability with TypeScript Numeric Separators when working with Large Numbers

    When looking at large numbers in code (such as 1800000) it’s oftentimes difficult for the human eye ...

  2. 【概率论】6-2:大数定理(The Law of Large Numbers)

    title: [概率论]6-2:大数定理(The Law of Large Numbers) categories: - Mathematic - Probability keywords: - Ma ...

  3. Law of large numbers and Central limit theorem

    大数定律 Law of large numbers (LLN) 虽然名字是 Law,但其实是严格证明过的 Theorem weak law of large number (Khinchin's la ...

  4. 中心极限定理 | central limit theorem | 大数定律 | law of large numbers

    每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?

  5. Markov and Chebyshev Inequalities and the Weak Law of Large Numbers

    https://www.math.wustl.edu/~russw/f10.math493/chebyshev.pdf http://www.tkiryl.com/Probability/Chapte ...

  6. 大数定律(Law of Large Numbers)

    大数定律:每次从总体中随机抽取1个样本,这样抽取很多次后,样本的均值会趋近于总体的期望.也可以理解为:从总体中抽取容量为n的样本,样本容量n越大,样本的均值越趋近于总体的期望.当样本容量极大时,样本均 ...

  7. UVA题目分类

    题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...

  8. HOJ题目分类

    各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...

  9. UVA 10392 (13.07.28)

    Problem F: Factoring Large Numbers One of the central ideas behind much cryptography is that factori ...

随机推荐

  1. 移动端测试===安卓设备共享程序-发布版本“share device”

    分享一个开源的项目 share device 项目地址:https://github.com/sunshine4me/ShareDevicePublish/tree/win7-x64 首先选择对应系统 ...

  2. PXC 避免加入集群时发生SST

    环境 现有集群节点: 192.168.99.210:3101 新加入节点: 192.168.99.211:3101 通过xtrabackup备份还原实例,并通过同步方式追数据: 已有节点情况: roo ...

  3. Fel表达式计算引擎学习

    转载原文地址:Fel是轻量级的高效的表达式计算引擎 Fel的问题 Fel的问题 Fel是轻量级的高效的表达式计算引擎 Fel在源自于企业项目,设计目标是为了满足不断变化的功能需求和性能需求. Fel是 ...

  4. python 字典value排序

    #!/usr/bin/env python#coding:utf-8s = {“a”:1,”b”:3,”c”:2} print sorted(s.iteritems(),key=lambda t:t[ ...

  5. phoenix到hbase的应用

    一.phoenix的简介 hbase的java api或者其语法很难用,可以认为phoenix是一个中间件,提供了访问hbase的另外的语法. 二.配置phoenix和hbase 1.下载 phoen ...

  6. Python基础系列----函数,面向对象,异常

    1.前言                                                                                               前 ...

  7. 8种json数据查询方式

    你有没有对“在复杂的JSON数据结构中查找匹配内容”而烦恼.这里有8种不同的方式可以做到: JsonSQL JsonSQL实现了使用SQL select语句在json数据结构中查询的功能. 例子: ? ...

  8. CentOS 7.4 下面安装 jdk 10 的一点总结

    CentOS 7.4 下面安装 jdk 10 的一点总结 一.前期工作 1.检验系统原版本 [root@zck ~]# java -version java version "1.7.0_& ...

  9. Python 一条语句如何在多行显示的问题

    在做python学习的时候,我照着pdf,敲代码,遇到一大难题: return render_to_response('index.html',{'title':'my page','user':us ...

  10. CF1020B Badge 【模拟链表】

    n个点(n<=1000) 接下来n个整数表示ai 第i个数ai表示i到ai有一条边 输出: n个数 表示从第i个点出发,最先被访问两次的点 样例1: 从1 出发,先到达2,2会到达3,3又到达2 ...