uva10392 Factoring Large Numbers

本文涉及的知识点是,使用线性筛选法得到素数表。

Table of Contents

1 题目

====================

Problem F: Factoring Large Numbers

One of the central ideas behind much cryptography is that factoring large numbers is computationally intensive. In this context one might use a 100 digit number that was a product of two 50 digit prime numbers. Even with the fastest projected computers this factorization will take hundreds of years.

You don't have those computers available, but if you are clever you can still factor fairly large numbers.

Input

The input will be a sequence of integer values, one per line, terminated by a negative number. The numbers will fit in gcc's long long int datatype. You may assume that there will be at most one factor more than 1000000.

Output

Each positive number from the input must be factored and all factors (other than 1) printed out. The factors must be printed in ascending order with 4 leading spaces preceding a left justified number, and followed by a single blank line.

Sample Input

90
1234567891
18991325453139
12745267386521023
-1

Sample Output

    2
3
3
5 1234567891 3
3
13
179
271
1381
2423 30971
411522630413

====================
 

2 思路

这是一个分解质因数问题,因为题目说明了数字不超过long long int表示的数,所以 这不是一个大数问题。基本的思路是首先得到素数表,再用输入的大数对素数表中的 素数依次作除法运算。

关键的地方有两个,一个是素数表的获得。这里使用了线性筛选法,把所有的合数筛去, 关键的思想在于每个合数都是被它的最小素因子筛去的,且只会被筛一次。

关键代码在于:

 if (!i%prime[k]) break;

之所以可以break在于,i可以整除prime[k], 在于下一次循环要筛的数字i*prime[k+1]一定已经被prime[k]筛过了,因为素数表是按大小排列的,prime[k]比prime[k+1]小,而每个合数都是被它最小的素因子筛出去的。

第二个点在于题目中已经说明,最多有一个素因子大于1000000,所以素数表只开到1000000就可以了, 如果遍历完素数表输入的数字还没有变成1,那么,将其最终结果输出就可以了,这个结果 就是那个大于1000000的因子,否则它一定可以被1000000内的素数整除。

3 代码

#include <stdio.h>
#include <string.h> #define N 1000000
long long prime[N];
short is_prime[N]; long long get_prime (long long prime[], long long n) {
long long i, j, k;
memset (is_prime, 0, sizeof(is_prime[0])*n); j = 0;
for (i=2; i<n; i++) {
if (!is_prime[i]) prime[j++] = i;
for (k=0; k<j && i*prime[k]<n; k++) {
is_prime[ i*prime[k] ] = 1;
if (!i%prime[k]) break;
}
} return j;
} int main() {
long long n;
long long i;
long long prime_num; prime_num = get_prime (prime, N); while (scanf ("%lld", &n) != EOF) {
if (n == -1) break; for (i=0; i<prime_num && n!=1; i++) {
while (n % prime[i] == 0) {
printf (" %lld\n", prime[i]);
n /= prime[i];
}
}
if (n != 1) printf (" %lld\n", n);
printf ("\n");
} return 0;
}

uva10392 Factoring Large Numbers的更多相关文章

  1. [Typescript] Improve Readability with TypeScript Numeric Separators when working with Large Numbers

    When looking at large numbers in code (such as 1800000) it’s oftentimes difficult for the human eye ...

  2. 【概率论】6-2:大数定理(The Law of Large Numbers)

    title: [概率论]6-2:大数定理(The Law of Large Numbers) categories: - Mathematic - Probability keywords: - Ma ...

  3. Law of large numbers and Central limit theorem

    大数定律 Law of large numbers (LLN) 虽然名字是 Law,但其实是严格证明过的 Theorem weak law of large number (Khinchin's la ...

  4. 中心极限定理 | central limit theorem | 大数定律 | law of large numbers

    每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?

  5. Markov and Chebyshev Inequalities and the Weak Law of Large Numbers

    https://www.math.wustl.edu/~russw/f10.math493/chebyshev.pdf http://www.tkiryl.com/Probability/Chapte ...

  6. 大数定律(Law of Large Numbers)

    大数定律:每次从总体中随机抽取1个样本,这样抽取很多次后,样本的均值会趋近于总体的期望.也可以理解为:从总体中抽取容量为n的样本,样本容量n越大,样本的均值越趋近于总体的期望.当样本容量极大时,样本均 ...

  7. UVA题目分类

    题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...

  8. HOJ题目分类

    各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...

  9. UVA 10392 (13.07.28)

    Problem F: Factoring Large Numbers One of the central ideas behind much cryptography is that factori ...

随机推荐

  1. 安全测试===appscan扫描工具介绍

    IBM AppScan该产品是一个领先的 Web 应用安全测试工具,曾以 Watchfire AppScan 的名称享誉业界.Rational AppScan 可自动化 Web 应用的安全漏洞评估工作 ...

  2. 【LabVIEW技巧】LabVIEW中的错误1

    前言 前几日,小黑充电学习意外的看到了下面的这个东东. 编程许久竟然没有见过这样子的错误枚举,甚为好奇,问刘大后才知道是Error Ring,为此恶补一下LabVIEW中与错误处理相关的内容. 错误的 ...

  3. canvas写的地铁地图

    更新: 18-9-21:填了个坑,更新了canvas绘制过程. 根据的是百度提供的坐标,canvas的坐标是大的坐标在后面,所以跟实际生活方向相反. 所以canvas里的北方在下方,实际生活中北方在上 ...

  4. saltstack安装和配置

    [root@web9 salt]# vi filetest.sls //ADD file_test: file.managed: - name: /tmp/lulu.com - source: sal ...

  5. tornado 模版

    tornado 模版语法 取消转义 : 取消项目转义 :autoescape = None 取消模版转义:{% autoescape None %} 取消行转义   :{% raw bd %} 强制转 ...

  6. mysql-表完整性约束

    阅读目录 一 介绍 二 not null与default 三 unique 四 primary key 五 auto_increment 六 foreign key 七 总结     一 介绍 回到顶 ...

  7. hdu 4198:Quick out of the Harbour解题报告

    Quick out of the Harbour Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java ...

  8. hdu 4632(区间dp)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/ ...

  9. 如何实现artTemplate模板的可重用性,以此框架打造自己的自定义组件

    问题的提出: 我们为什么非得要引入artTemplate来进行JSON数据的渲染呢? http://dagmom.iteye.com/blog/1671498http://bbs.csdn.net/t ...

  10. SpringMVC调用过程

    SpringMVC中的四大组件: 1.前端控制器(DispatcherServlet)      =>[无需程序员开发] 主要是负责request和response对象的转发和响应. 2.处理器 ...