【(博弈)dfs序+树状数组】BZOJ2819-Nim
【题目大意】
普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取。谁不能取谁输。这个游戏是有必胜策略的。现在对每一堆编号1,2,3,4,...n,在堆与堆间连边,没有自环与重边,从任意堆到任意堆都只有唯一一条路径可到达。然后他不停地进行如下操作:
1.随机选两个堆v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略,如果有,vfleaking将会考虑将这些石子堆作为初始局面之一,用来坑玩家。
2.把堆v中的石子数变为k。
【思路】
对于普通的Nim游戏,如果所有石子数量异或和为1,则必胜,否则不能。
现在这些堆组成了一棵树,我们用query(x)表示从x到根节点的异或值,显然u到v的路径上的异或和胃query(u) xor query(v) xor (num[lca(u,v)])(因为它们的最近公共祖先被重复异或了两次,抵消掉了,所以又要异或回来。)
第一种做法就是用数量剖分,映射到线段树上去解决。
由于每个u的值改变,它仅仅会影响到它及它子树的query值,而且一个节点及其子树的dfs序是连续的,可以用树状数组来维护一下。
关于利用dfs序相同性质的一道题目,和AC自动机结合更困难些→♦
树状数组维护xor和维护和一个道理,相当于一个区间修改点查询的树状数组。注意一下修改操作的方法:delta=num[u]^v,这样异或的时候原来的num[u]就抵消了,留下了v。这比较简单,但是不要忘记了修改后要num[u]→v。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int MAXN=+;
const int DEG=;
vector<int> E[MAXN];
int start[MAXN],end[MAXN];
int n,num[MAXN],e[MAXN];
int anc[MAXN][DEG],dep[MAXN];
int cnt=; void addedge(int u,int v)
{
E[u].push_back(v);
E[v].push_back(u);
} /*树状数组区间修改点查询部分*/
int lowbit(int x)
{
return (x&(-x));
} void modify(int x,int y,int delta)
{
if (x<y) swap(x,y);
x++;
while (x<MAXN) e[x]^=delta,x+=lowbit(x);
while (y<MAXN) e[y]^=delta,y+=lowbit(y);
} int query(int x)
{
int ret=;
while(x) ret^=e[x],x-=lowbit(x);
return ret;
} /*dfs序部分及lca的初始化*/
void dfs(int u,int fa,int d)
{
dep[u]=d;
anc[u][]=fa;
start[u]=++cnt;
for (int i=;i<E[u].size();i++)
if (E[u][i]!=fa) dfs(E[u][i],u,d+);
end[u]=cnt;
} /*lca部分*/
void getanc()
{
for (int i=;i<DEG;i++)
for (int j=;j<=n;j++)
anc[j][i]=anc[anc[j][i-]][i-];
} int swim(int u,int H)
{
int i=;
while (H)
{
if (H&) u=anc[u][i];
i++;
H>>=;
}
return u;
} int lca(int u,int v)
{
if (dep[u]<dep[v]) swap(u,v);
u=swim(u,dep[u]-dep[v]);
if (u==v) return u;
for (int i=DEG-;i>=;i--)
{
if (anc[u][i]!=anc[v][i])
{
u=anc[u][i];
v=anc[v][i];
}
}
return anc[u][];
} /*main*/
void init()
{
scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%d",&num[i]);
for (int i=;i<n-;i++)
{
int u,v;
scanf("%d%d",&u,&v);
addedge(u,v);
}
dfs(,,);
getanc();
memset(e,,sizeof(e));
for (int i=;i<=n;i++) modify(start[i],end[i],num[i]);
} void solve()
{
int q;
scanf("%d",&q);
for (int i=;i<q;i++)
{
char c[];int u,v;
scanf("%s%d%d",c,&u,&v);
if (c[]=='Q')
{
int LCA=lca(u,v);
int ans=query(start[u])^query(start[v])^num[LCA];
if (ans) puts("Yes");else puts("No");
}
else
{
modify(start[u],end[u],num[u]^v);
num[u]=v;
}
}
} int main()
{
init();
solve();
return ;
}
【(博弈)dfs序+树状数组】BZOJ2819-Nim的更多相关文章
- 【bzoj2819】Nim DFS序+树状数组+倍增LCA
题目描述 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游戏是有必胜策略 ...
- 【BZOJ】2819: Nim(树链剖分 / lca+dfs序+树状数组)
题目 传送门:QWQ 分析 先敲了个树链剖分,发现无法AC(其实是自己弱,懒得debug.手写栈) 然后去学了学正解 核心挺好理解的,$ query(a) $是$ a $到根的异或和. 答案就是$ l ...
- HDU 3887:Counting Offspring(DFS序+树状数组)
http://acm.hdu.edu.cn/showproblem.php?pid=3887 题意:给出一个有根树,问对于每一个节点它的子树中有多少个节点的值是小于它的. 思路:这题和那道苹果树是一样 ...
- HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...
- Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组
C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...
- BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )
一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...
- 【bzoj3881】[Coci2015]Divljak AC自动机+树链的并+DFS序+树状数组
题目描述 Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...
- [BZOJ1103][POI2007]大都市meg dfs序+树状数组
Description 在经济全球化浪潮的影响下,习惯于漫步在清晨的乡间小路的邮递员Blue Mary也开始骑着摩托车传递邮件了.不过,她经常回忆起以前在乡间漫步的情景.昔日,乡下有依次编号为1..n ...
- 2018.10.20 NOIP模拟 巧克力(trie树+dfs序+树状数组)
传送门 好题啊. 考虑前面的32分,直接维护后缀trietrietrie树就行了. 如果#号不在字符串首? 只需要维护第一个#前面的字符串和最后一个#后面的字符串. 分开用两棵trie树并且维护第一棵 ...
- HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca
Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...
随机推荐
- 解决ie9以下下不支持html5和媒体查询(Media Queries)
ie9以下不支持媒体查询和html5,可以使用补丁完美兼容 1.html5shiv ie6~8不识别html5的新元素,可以通过使用html5shiv来解决 <!--[if lt IE 9]&g ...
- Part2-HttpClient官方教程-Chapter3-HTTP状态管理
ps:近日忙于课设与一个赛事的准备....时间真紧啊~~ 最初,HTTP被设计为一种无状态的,面向请求/响应的协议,它并没有为跨越多个逻辑相关的请求/响应交换的有状态会话做出特殊规定.随着HTTP协议 ...
- python面向对象进阶(下)
一.item系列:就是把字典模拟成一个字典去操作(操作字典就用item的方式) obj[‘属性’]的方式去操作属性时触发的方法 __getitem__:obj['属性'] 时触发 __setitem_ ...
- Linux 入门记录:十三、Linux 扩展权限
一.默认权限 每一个终端都有一个 umask 属性,是用来确定新建文件或目录的默认权限的“掩码”(mask 有“掩码”的含义,至于 u,后面说). Linux 中一般有默认的权限掩码,使用命令 uma ...
- python实战===itchat
import itchat itchat.login() friends=itchat.get_friends(update=True)[0:] male=female=other=0 for i i ...
- mysql 数据库修改名字
通过information_schema信息修改rename database的目的 mysql 没有rename database 命令,只能变相修改表到目标库里的表来实现: 拼接reanme ta ...
- Deep Learning基础--26种神经网络激活函数可视化
在神经网络中,激活函数决定来自给定输入集的节点的输出,其中非线性激活函数允许网络复制复杂的非线性行为.正如绝大多数神经网络借助某种形式的梯度下降进行优化,激活函数需要是可微分(或者至少是几乎完全可微分 ...
- git - 开发者电脑与服务器的配置
首先公司要有一台git服务器,现在一般都托管在github服务器上,在中国可能会托管到oschina上,oschina有一点好处就是可以免费托管私有项目,而在github上想要托管自己的项目是收费的, ...
- 【C++】C++11的auto和decltype关键字
转自: http://www.linuxidc.com/Linux/2015-02/113568.htm 今天要介绍C++11中两个重要的关键字,即auto和decltype.实际上在C++98中,已 ...
- 《逐梦旅程 WINDOWS游戏编程之从零开始》笔记4——Direct3D编程基础
第11章 Direct3D编程基础 2D游戏是贴图的艺术,3D游戏是渲染的艺术.这句话在我学过了之前的GDI编程之后,前一句算是有所体会,现在是来理解后一句的时候了. 安装DirectX SDK配置啥 ...