在本章中,我们将使用基本系列/索引来讨论字符串操作。在随后的章节中,将学习如何将这些字符串函数应用于数据帧(DataFrame)。

Pandas提供了一组字符串函数,可以方便地对字符串数据进行操作。 最重要的是,这些函数忽略(或排除)丢失/NaN值。

几乎这些方法都使用Python字符串函数(请参阅: http://docs.python.org/3/library/stdtypes.html#string-methods )。 因此,将Series对象转换为String对象,然后执行该操作。

下面来看看每个操作的执行和说明。

编号 函数 描述
1 lower() Series/Index中的字符串转换为小写。
2 upper() Series/Index中的字符串转换为大写。
3 len() 计算字符串长度。
4 strip() 帮助从两侧的系列/索引中的每个字符串中删除空格(包括换行符)。
5 split(' ') 用给定的模式拆分每个字符串。
6 cat(sep=' ') 使用给定的分隔符连接系列/索引元素。
7 get_dummies() 返回具有单热编码值的数据帧(DataFrame)。
8 contains(pattern) 如果元素中包含子字符串,则返回每个元素的布尔值True,否则为False
9 replace(a,b) 将值a替换为值b
10 repeat(value) 重复每个元素指定的次数。
11 count(pattern) 返回模式中每个元素的出现总数。
12 startswith(pattern) 如果系列/索引中的元素以模式开始,则返回true
13 endswith(pattern) 如果系列/索引中的元素以模式结束,则返回true
14 find(pattern) 返回模式第一次出现的位置。
15 findall(pattern) 返回模式的所有出现的列表。
16 swapcase 变换字母大小写。
17 islower() 检查系列/索引中每个字符串中的所有字符是否小写,返回布尔值
18 isupper() 检查系列/索引中每个字符串中的所有字符是否大写,返回布尔值
19 isnumeric() 检查系列/索引中每个字符串中的所有字符是否为数字,返回布尔值。

现在创建一个系列,看看上述所有函数是如何工作的。

import pandas as pd
import numpy as np s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveMinsu']) print (s)
Python

执行上面示例代码,得到以下结果 -

0             Tom
1 William Rick
2 John
3 Alber@t
4 NaN
5 1234
6 SteveMinsu
dtype: object
Shell

1. lower()函数示例

import pandas as pd
import numpy as np s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveMinsu']) print (s.str.lower())
Python

执行上面示例代码,得到以下结果 -

0             tom
1 william rick
2 john
3 alber@t
4 NaN
5 1234
6 steveminsu
dtype: object
Shell

2. upper()函数示例

import pandas as pd
import numpy as np s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveMinsu']) print (s.str.upper())
Python

执行上面示例代码,得到以下结果 -

0             TOM
1 WILLIAM RICK
2 JOHN
3 ALBER@T
4 NaN
5 1234
6 STEVESMITH
dtype: object
Shell

3. len()函数示例

import pandas as pd
import numpy as np s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveMinsu'])
print (s.str.len())
Python

执行上面示例代码,得到以下结果 -

0     3.0
1 12.0
2 4.0
3 7.0
4 NaN
5 4.0
6 10.0
dtype: float64
Shell

4. strip()函数示例

import pandas as pd
import numpy as np
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print (s)
print ("=========== After Stripping ================")
print (s.str.strip())
Python

执行上面示例代码,得到以下结果 -

0             Tom
1 William Rick
2 John
3 Alber@t
dtype: object
=========== After Stripping ================
0 Tom
1 William Rick
2 John
3 Alber@t
dtype: object
Shell

5. split(pattern)函数示例

import pandas as pd
import numpy as np
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print (s)
print ("================= Split Pattern: ==================")
print (s.str.split(' '))
Python

执行上面示例代码,得到以下结果 -

0             Tom
1 William Rick
2 John
3 Alber@t
dtype: object
================= Split Pattern: ==================
0 [Tom, ]
1 [, William, Rick]
2 [John]
3 [Alber@t]
dtype: object
Shell

6. cat(sep=pattern)函数示例

import pandas as pd
import numpy as np s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print (s.str.cat(sep=' <=> '))
Python

执行上面示例代码,得到以下结果 -

Tom  <=>  William Rick <=> John <=> Alber@t
Shell

7. get_dummies()函数示例

import pandas as pd
import numpy as np s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print (s.str.get_dummies())
Python

执行上面示例代码,得到以下结果 -

    William Rick  Alber@t  John  Tom
0 0 0 0 1
1 1 0 0 0
2 0 0 1 0
3 0 1 0 0
Shell

8. contains()函数示例

import pandas as pd
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print (s.str.contains(' '))
Python

执行上面示例代码,得到以下结果 -

0     True
1 True
2 False
3 False
dtype: bool
Shell

9. replace(a,b)函数示例

import pandas as pd
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print (s)
print ("After replacing @ with $: ============== ")
print (s.str.replace('@','$'))
Python

执行上面示例代码,得到以下结果 -

0             Tom
1 William Rick
2 John
3 Alber@t
dtype: object
After replacing @ with $: ==============
0 Tom
1 William Rick
2 John
3 Alber$t
dtype: object
Shell

10. repeat(value)函数示例

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print (s.str.repeat(2))
Python

执行上面示例代码,得到以下结果 -

0                      Tom Tom
1 William Rick William Rick
2 JohnJohn
3 Alber@tAlber@t
dtype: object
Shell

11. count(pattern)函数示例

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print ("The number of 'm's in each string:")
print (s.str.count('m'))
Python

执行上面示例代码,得到以下结果 -

The number of 'm's in each string:
0 1
1 1
2 0
3 0
dtype: int64
Shell

12. startswith(pattern)函数示例

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print ("Strings that start with 'T':")
print (s.str. startswith ('T'))
Python

执行上面示例代码,得到以下结果 -

Strings that start with 'T':
0 True
1 False
2 False
3 False
dtype: bool
Shell

13. endswith(pattern)函数示例

import pandas as pd
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print ("Strings that end with 't':")
print (s.str.endswith('t'))
Python

执行上面示例代码,得到以下结果 -

Strings that end with 't':
0 False
1 False
2 False
3 True
dtype: bool
Shell

14. find(pattern)函数示例

import pandas as pd
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print (s.str.find('e'))
Python

执行上面示例代码,得到以下结果 -

0   -1
1 -1
2 -1
3 3
dtype: int64
Shell

注意:-1表示元素中没有这样的模式可用。

15. findall(pattern)函数示例

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print (s.str.findall('e'))
Python

执行上面示例代码,得到以下结果 -

0     []
1 []
2 []
3 [e]
dtype: object
Shell

空列表([])表示元素中没有这样的模式可用。

16. swapcase()函数示例

import pandas as pd

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t'])
print (s.str.swapcase())
Python

执行上面示例代码,得到以下结果 -

0             tOM
1 wILLIAM rICK
2 jOHN
3 aLBER@T
dtype: object
Shell

17. islower()函数示例

import pandas as pd

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t'])
print (s.str.islower())
Python

执行上面示例代码,得到以下结果 -

0    False
1 False
2 False
3 False
dtype: bool
Shell

18. isupper()函数示例

import pandas as pd

s = pd.Series(['TOM', 'William Rick', 'John', 'Alber@t'])

print (s.str.isupper())
Python

执行上面示例代码,得到以下结果 -

0    True
1 False
2 False
3 False
dtype: bool
Shell

19. isnumeric()函数示例

import pandas as pd
s = pd.Series(['Tom', '1199','William Rick', 'John', 'Alber@t'])
print (s.str.isnumeric())
Python

执行上面示例代码,得到以下结果 -

0    False
1 True
2 False
3 False
4 False
dtype: bool

Pandas字符串和文本数据的更多相关文章

  1. pandas处理大文本数据

    当数据文件是百万级数据时,设置chunksize来分批次处理数据 案例:美国总统竞选时的数据分析 读取数据 import numpy as np import pandas as pdfrom pan ...

  2. 机器学习入门-文本数据-构造词频词袋模型 1.re.sub(进行字符串的替换) 2.nltk.corpus.stopwords.words(获得停用词表) 3.nltk.WordPunctTokenizer(对字符串进行分词操作) 4.np.vectorize(对函数进行向量化) 5. CountVectorizer(构建词频的词袋模型)

    函数说明: 1. re.sub(r'[^a-zA-Z0-9\s]', repl='', sting=string)  用于进行字符串的替换,这里我们用来去除标点符号 参数说明:r'[^a-zA-Z0- ...

  3. 采用Json字符串,往服务器回传大量富文本数据时,需要注意的地方,最近开发时遇到的问题。

    json字符串中存在常规的用户输入的字符串,和很多的富文本样式标签(用户不能直接看到,点击富文本编辑器中的html源码按钮能看到),例如下面的: <p><strong>富文本& ...

  4. Python文本数据互相转换(pandas and win32com)

    (工作之后,就让自己的身心都去休息吧) 今天介绍一下文本数据的提取和转换,这里主要实例的转换为excel文件(.xlsx)转换world文件(.doc/docx),同时需要使用win32api,同py ...

  5. SQL server 存储过程 C#调用Windows CMD命令并返回输出结果 Mysql删除重复数据保留最小的id C# 取字符串中间文本 取字符串左边 取字符串右边 C# JSON格式数据高级用法

    create proc insertLog@Title nvarchar(50),@Contents nvarchar(max),@UserId int,@CreateTime datetimeasi ...

  6. 【转载】socket通信-C#实现tcp收发字符串文本数据

    在日常碰到的项目中,有些场景需要发送文本数据,也就是字符串,比如简单的聊天文字,JSON字符串等场景.那么如何如何使用SharpSocket来收发此类数据呢?其中要掌握的关键点是什么呢? 点击查看原博 ...

  7. JAVASE02-Unit08: 文本数据IO操作 、 异常处理

    Unit08: 文本数据IO操作 . 异常处理 * java.io.ObjectOutputStream * 对象输出流,作用是进行对象序列化 package day08; import java.i ...

  8. 《Python CookBook2》 第一章 文本 - 过滤字符串中不属于指定集合的字符 && 检查一个字符串是文本还是二进制

    过滤字符串中不属于指定集合的字符 任务: 给定一个需要保留的字符串的集合,构建一个过滤函数,并可将其应用于任何字符串s,函数返回一个s的拷贝,该拷贝只包含指定字符集合中的元素. 解决方案: impor ...

  9. MySQL中游标使用以及读取文本数据

    原文:MySQL中游标使用以及读取文本数据 前言 之前一直没有接触数据库的学习,只是本科时候修了一本数据库基本知识的课.当时只对C++感兴趣,天真的认为其它的课都没有用,数据库也是半懂不懂,胡乱就考试 ...

随机推荐

  1. 巨蟒python全栈开发-第7天 基本数据类型补充&深浅拷贝

    1.基本数据类型补充 2.深浅拷贝 DAY7-基本数据类型(基本数据类型补充&深浅拷贝) 本节主要内容: 1.补充基础数据类型 (1)join方法 (2)split方法 (3)列表不能在循环时 ...

  2. bootstrap-datetimepicker 滚动错位问题

    问题:在页面上弹出控件的时候,滚动后面页面,时间控件就会错位. 解决方法1: 搜索bootstrap-datetimepicker.js里面的"show:"方法,在this.pla ...

  3. (转) RabbitMQ学习之延时队列

    http://blog.csdn.net/zhu_tianwei/article/details/53563311 在实际的业务中我们会遇见生产者产生的消息,不立即消费,而是延时一段时间在消费.Rab ...

  4. JQuery设置checkbox选中或取消等相关操作

    $("[name='checkbox']").attr("checked",'true');//全选 $("[name='checkbox']&quo ...

  5. FatMouse's Speed---hdu1160(简单dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1160 题意就是给你一些老鼠(编号1,2,3,4,5,6,7,8...)的体重和他们的速度然后求出最大的 ...

  6. 洛谷 P2331 [SCOI2005]最大子矩阵

    洛谷 这一题,乍一眼看上去只想到了最暴力的暴力--大概\(n^4\)吧. 仔细看看数据范围,发现\(1 \leq m \leq 2\),这就好办了,分两类讨论. 我先打了\(m=1\)的情况,拿了30 ...

  7. Python 模块之 pyexcel_xls

    一.适用场景 在很多数据统计或者数据分析的场景中,我们都会使用到excel: 在一些系统中我们也会使用excel作为数据导入和导出的方式,那么如何使用python加以辅助我们快速进行excel数据做更 ...

  8. Web Service简单demo

    最近开发因需求要求需要提供Web Service接口供外部调用,由于之前没有研究过该技术,故查阅资料研究了一番,所以写下来记录一下,方便后续使用. 这个demo采用CXF框架进行开发,后续所提到的We ...

  9. tensorflow 中 name_scope 及 variable_scope 的异同

    Let's begin by a short introduction to variable sharing. It is a mechanism in TensorFlow that allows ...

  10. for迭代序列的三种方式

    while循环是条件性的,for循环是迭代性的. for循环会访问所有迭代对象中的所有元素,并在所有条目都结束后结束循环. for循环迭代序列有三种基本的方式,分别是通过序列项迭代.通过索引迭代.通过 ...