关于B+树数据结构

①InnoDB存储引擎支持两种常见的索引。

一种是B+树,一种是哈希。

B+树中的B代表的意思不是二叉(binary),而是平衡(balance),因为B+树最早是从平衡二叉树演化来的,但是B+树又不是一个平衡二叉树。

同时,B+树索引并不能找到一个给定键值的具体行。B+树索引只能找到的是被查找数据行所在的页。然后数据库通过把读入内存,再在内存中进行查找,最后得到查找的数据。

再说一下平衡二叉树:

这是一幅平衡二叉树,左子树的值总是小于根的值,右子树的值总是大于根的键值,因此可以通过中序遍历(以递归的方式按照左中右的顺序来访问子树),因此遍历以后得到的输出是9、17、28、35、39、56、65、87。这样,如果要查找键值为28的记录,先找到根,然后发现根大于28,找左子树,发现左子树的根17小于28,再找下一层右子树,然后找到28。通过了3次查找找到了需要找的节点。但是如果二叉树节点分布非常不均匀,就像第二张图那样,那么如果要查找39这个节点的话,查找效率和顺序查找就差不多了,最差的结果就是查找65,那么二叉搜索树就会完全退化成线性表。因此如果想要最大性能地构造一个二叉查找树,需要这颗二叉查找树是平衡的,平衡二叉树对于查找的性能是比较高的,但是不是最高的,只是接近最高的性能。要达到最好的性能,需要建立一颗最优二叉树,但是最优二叉树的建立和维护需要大量的操作,因此用平衡 二叉树就比较好。同时,平衡二叉树多用于内存结构对象中,因此维护他的开销相对较小。

②为什么使用B+树呢?

虽然二叉查找树和平衡二叉树都能够实现较快的数据查找,但是,由于数据库的内容是存在于磁盘上,而磁盘IO与内存IO相比,比内存IO慢了10^5~10^6倍,为了减少磁盘IO,提高检索速度,因而才用了B+树这种数据结构。换言之,B+树就是为磁盘或其他直接存取辅助设备而设计的一种多路查找树,是多叉树。

③什么是B+树,其特性是什么

B+树的概念还是过于复杂,直接上图比较合适,来一张维基百科上的截图:

从上面可以看出,所有记录的节点都在叶节点中,并且是顺序存放的,如果我们从最左边的节点开始遍历,可以得到的所有键值的顺序是:1、2、3、4、5、6、7。

在B+树中,所有记录节点都是按照键值的大小顺序存放在同一层的叶节点中,各个叶子节点通过指针进行连接。由于一个节点中存放了多条的数据,那么检索的时候,进行的磁盘IO次数将会少掉很多。这是用b+树而不用二叉树的原因。

在B+树插入的时候,为了保持平衡,对于新插入的键值可能需要做大量的拆分页操作,而B+树主要用于磁盘,因此页的拆分意味着磁盘操作,因此应该在可能的情况下尽量减少页的拆分。因此,B+树提供了旋转的功能。至于旋转和删除等内容,过于复杂,这篇笔记先不做记录。只是了解使用B+树的原因以及B+树的特性。

关于索引

InnoDB存储引擎使用聚集索引,实际的数据行和相关键值保存在一块。因而,在InnoDB中要使用索引访问数据始终需要两次查找,而不是一次。因为索引叶子节点中存储的不是行的物理位置,而是主键的值。即:二次索引-->主键-->数据的叶子-->通过数据叶字节点中的page directory找到数据行。

因为每一张InnoDB的表都会有一个主键索引,但是如果没有显式指定怎么办?如果没有手工去指定主键索引的话,那么,InnoDB引擎会指派一个unique的列作为主键,如果没有unique的字段的话,那么便会自动生成一个隐含的列作为主键。

所以,在在InnoDB的设计中,应该尽可能的使用一个与业务无关auto_increment的自增主键,而不要去使用uuid之类的随机(无序)的聚集键。同时,由于所有的索引都使用主键的索引,如果主键索引过长,也会使辅助索引相应的变大。

聚集索引的存储并不是物理上的连续,而是逻辑上连续的。一方面,页通过双向链表连接,页按照主键的顺序排列;另一方面,每个页中的记录也是通过双向链表进行维护,物理存储上可以同样不按照主键存储。

对于目前的MySQL来说,所有的对于索引的添加或者删除操作,MySQL数据库都是要先创建一张新的临时表,然后再把数据导入临时表,再删除原来的表,然后再把临时表命名为原来的表。所以,如果一张表中数据太多的话,那么后期添加删除索引需要花费很长的时间,因而最好在数据库设计初期便设计好索引。

还有,虽然InnoDB存储引擎从版本innoDB Plugin开始,支持一种称为快速索引创建的方法,但是这种方法只限定于辅助索引,对于主键的创建和删除还是需要重建一张表。

InnoDB存储引擎的B+树索引算法的更多相关文章

  1. MySQL:InnoDB存储引擎的B+树索引算法

    很早之前,就从学校的图书馆借了MySQL技术内幕,InnoDB存储引擎这本书,但一直草草阅读,做的笔记也有些凌乱,趁着现在大四了,课程稍微少了一点,整理一下笔记,按照专题写一些,加深一下印象,不枉读了 ...

  2. InnoDB存储引擎的 B+ 树索引

    B+ 树是为磁盘设计的 m 叉平衡查找树,在B+树中,所有的记录都是按照键值的大小,顺序存放在同一层的叶子节点上,各叶子节点组成双链表.叶节点是数据,非叶节点是索引. 首先,需要清楚:B+ 树索引并不 ...

  3. MySQL技术内幕InnoDB存储引擎(五)——索引及其相关算法

    索引概述 索引太多可能会降低运行性能,太少就会影响查询性能. 最开始就要在需要的地方添加索引. 常见的索引: B+树索引 全文索引 哈希索引 B+树索引 B+树 所有的叶子节点存放完整的数据,非叶子节 ...

  4. MySQL中InnoDB存储引擎中的哈希算法

    InnoDB存储引擎使用哈希算法来对字典进行查找,其冲突机制采用链表方式,哈希函数采用除法散列方式.对于缓冲池页的哈希表来说,在缓冲池中的Page页都有一个chain指针.它指向相同哈希函数值的页的. ...

  5. MySQL内核:InnoDB存储引擎 卷1

    MySQL内核:InnoDB存储引擎卷1(MySQL领域Oracle ACE专家力作,众多MySQL Oracle ACE力捧,深入MySQL数据库内核源码分析,InnoDB内核开发与优化必备宝典) ...

  6. MySQL技术内幕InnoDB存储引擎(表&索引算法和锁)

    表 4.1.innodb存储引擎表类型 innodb表类似oracle的IOT表(索引聚集表-indexorganized table),在innodb表中每张表都会有一个主键,如果在创建表时没有显示 ...

  7. (转)Mysql技术内幕InnoDB存储引擎-表&索引算法和锁

    表 原文:http://yingminxing.com/mysql%E6%8A%80%E6%9C%AF%E5%86%85%E5%B9%95innodb%E5%AD%98%E5%82%A8%E5%BC% ...

  8. MySQL InnoDB存储引擎体系架构 —— 索引高级

    转载地址:https://mp.weixin.qq.com/s/HNnzAgUtBoDhhJpsA0fjKQ 世界上只两件东西能震撼人们的心灵:一件是我们心中崇高的道德标准:另一件是我们头顶上灿烂的星 ...

  9. 图文实例解析,InnoDB 存储引擎中行锁的三种算法

    前文提到,对于 InnoDB 来说,随时都可以加锁(关于加锁的 SQL 语句这里就不说了,忘记的小伙伴可以翻一下上篇文章),但是并非随时都可以解锁.具体来说,InnoDB 采用的是两阶段锁定协议(tw ...

随机推荐

  1. 转!!SpringMVC与Struts2区别与比较总结

    1.Struts2是类级别的拦截, 一个类对应一个request上下文,SpringMVC是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应,所以说从架构本身上Spr ...

  2. numpy.random.random & numpy.ndarray.astype & numpy.arange

    今天看到这样一句代码: xb = np.random.random((nb, d)).astype('float32') #创建一个二维随机数矩阵(nb行d列) xb[:, 0] += np.aran ...

  3. Python基础教程-List和Tuple

    List Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时添加和删除其中的元素. 比如: >>> classmates = ['Michael',' ...

  4. Android图片加载框架Picasso最全使用教程5

    在之前的四篇博客中,我们学习了所有的关于Picasso的主要方法,我们也对这个Picasso有了一个很深的认识,下面就主要对Picasso自身进行分析,这样的话,会让我们更了解Picasso的核心方法 ...

  5. The Unreasonable Effectiveness of Recurrent Neural Networks (RNN)

    http://karpathy.github.io/2015/05/21/rnn-effectiveness/ There’s something magical about Recurrent Ne ...

  6. Python 实习遇见的各种面试题

    Python 语法 说说你平时 Python 都用哪些库 == 和 is 区别. == 是比较两对象的值,is 是比较在内存中的地址(id), is 相当于 id(objx) == id(objy). ...

  7. Codeforces Round #385 (Div. 1) C. Hongcow Buys a Deck of Cards

    地址:http://codeforces.com/problemset/problem/744/C 题目: C. Hongcow Buys a Deck of Cards time limit per ...

  8. dojo 代码调试

    安装 Firebug 使用firedug

  9. 【leetcode刷题笔记】Convert Sorted Array to Binary Search Tree

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. 题解 ...

  10. 在两台服务器之间建立信任关系解决scp,ssh等不用输入密码等问题

    A服务器(client)向B服务(server)SCP,SSH. A服务器:ssh-keygen -t rsa -C "kangzj" 一直回车. cd .ssh vim id_r ...