**题意:**10000组数据 问一个数n[1,1e12] 在k进制下有末尾0的k的个数。
**思路:**题意很明显,就是求n的因子个数,本来想直接预处理欧拉函数,然后拿它减n就行了。但注意是1e12次方法不可行。而一般的求因子显然也太慢,所有要想另一个办法。已知任意数可以分解成几个**质因数幂的乘积**,所以求出n所有的**质因数**和它的**指数**再进行**排列组合**就可以得到答案了。

#include <stdio.h>

#include <iostream>

#include <string.h>

#include <algorithm>

#include <utility>

#include <vector>

#include <map>

#include <set>

#include <string>

#include <stack>

#include <queue>

#define LL long long

#define MMF(x) memset((x),0,sizeof(x))

#define MMI(x) memset((x), INF, sizeof(x))

using namespace std;



const int INF = 0x3f3f3f3f;

const int N = 1e6+2000;

LL pri[N];

LL vis[N];

LL c = 0;

void prime()

{

MMF(vis);

for(LL i = 2; i < N; i++)

{

if(!vis[i])

{

for(LL j = i*i; j < N; j+= i)

vis[j] = 1;

pri[c++] = i;

}

}

}



int main()

{

prime();

int T;

int cnt = 0;

cin >> T;

while(T--)

{

LL n;

scanf("%lld", &n);

LL ans = 1;

for(int i = 0; i < c && pri[i]*pri[i] <= n; i++)

{

int ct = 0;

while(n % pri[i] == 0)

{

ct++;

n /= pri[i];

}

ans *= ct+1;

}

if(n > 1)//减枝后考虑n为质数的情况

ans <<= 1;

printf("Case %d: %lld\n", ++cnt, ans - 1);

}

return 0;

}

//可知任意数可分解成(p1^x)(p2^y)…的形式,所以求解因子只要在x、y、z…间排列组合就可以了

//这题无法直接使用欧拉函数打表,1e12的数据量定会超时

LightOJ 1028 - Trailing Zeroes (I) 质因数分解/排列组合的更多相关文章

  1. POj3421 X-factor Chains(质因数分解+排列组合)

    POj3421X-factor Chains 一开始没读懂题意,不太明白 Xi | Xi+1 where a | b means a perfectly divides into b的意思,后来才发现 ...

  2. lightoj 1028 - Trailing Zeroes (I)(素数筛)

    We know what a base of a number is and what the properties are. For example, we use decimal number s ...

  3. Light OJ 1028 - Trailing Zeroes (I) (数学-因子个数)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1028 题目大意:n除了1有多少个因子(包括他本身) 解题思路:对于n的每个因子 ...

  4. LightOJ 1138 Trailing Zeroes (III)(二分 + 思维)

    http://lightoj.com/volume_showproblem.php?problem=1138 Trailing Zeroes (III) Time Limit:2000MS     M ...

  5. LightOJ 1356 Prime Independence(质因数分解+最大独立集+Hopcroft-Carp)

    http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1356 题意: 给出n个数,问最多能选几个数,使得该集合中的 ...

  6. hdu 4497 GCD and LCM 质因素分解+排列组合or容斥原理

    //昨天把一个i写成1了 然后挂了一下午 首先进行质因数分解g=a1^b1+a2^b2...... l=a1^b1'+a2^b2'.......,然后判断两种不可行情况:1,g的分解式中有l的分解式中 ...

  7. csu 1801(合数分解+排列组合)

    1801: Mr. S’s Romance Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 15  Solved: 5[Submit][Status][W ...

  8. LightOj 1138 - Trailing Zeroes (III) 阶乘末尾0的个数 & 二分

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1138 题意:给你一个数n,然后找个一个最小的数x,使得x!的末尾有n个0:如果没有输出 ...

  9. LightOj 1090 - Trailing Zeroes (II)---求末尾0的个数

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1090 题意:给你四个数 n, r, p, q 求C(n, r) * p^q的结果中末尾 ...

随机推荐

  1. [C++] Class (part 2)

    Members that are const or reference must be initialized. Similary, members that are of a class type ...

  2. Android UI 设计之 TextView EditText 组件属性方法最详细解析

    . 作者 :万境绝尘  转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/18964835 . TextView 相关类的继承结构 ...

  3. poj 3009 (深搜求最短路)

    题目大意就是求在特定规则下的最短路,这个规则包含了消除障碍的操作.用BFS感觉选择消除障碍的时候不同路径会有影响,用DFS比较方便状态的还原(虽然效率比较低),因此这道题目采用DFS来写. 写的第一次 ...

  4. HDU 5794 A Simple Chess dp+Lucas

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 A Simple Chess Time Limit: 2000/1000 MS (Java/O ...

  5. freefcw/hustoj Install Guide

    First of all, this version hustoj is a skin and improved for https://code.google.com/p/hustoj/. So t ...

  6. eg_3

    3. 编写一个程序,返回一个 double 类型的二维数组,数组中的元素通过解析字符串参数获得,如字符串参数:“1,2;3,4,5;6,7,8”,则对应的数组为: d[0][0]=1.0, d[0][ ...

  7. ACM 第十五天

    计算几何基础 练习题 C - Wasted Time Mr. Scrooge, a very busy man, decided to count the time he wastes on all ...

  8. ZOJ 1403 F-Safecracker

    https://vjudge.net/contest/67836#problem/F "The item is locked in a Klein safe behind a paintin ...

  9. tomcat8配置管理员后仍然报403

    tomcat8配置管理员后仍然报403   修改conf/tomcat-users.xml <role rolename="manager"/> <role ro ...

  10. RPC-原理及RPC实例分析

    还有就是:RPC支持的BIO,NIO的理解 (1)BIO: Blocking IO;同步阻塞: (2)NIO:Non-Blocking IO, 同步非阻塞; 参考:IO多路复用,同步,异步,阻塞和非阻 ...