ARM汇编程序闪烁灯与其反汇编代码比较
/*
*LED闪烁
*led.s
*/
#define GPJ0CON 0xE0200240
#define GPJ0DAT 0xE0200244
.global _start //把 _start 链接属性改为外部
_start:
//第一步 :把0x1111 1111写入 0xe0200240(gpj0con)
ldr r0, =0x11111111 //这里ldr 为伪指令
ldr r1, =GPJ0CON
str r0, [r1] //寄存器间接寻址 将r0的值给ri所指地址的内存中 flash:
//第二部:把 0x0写入0xe0200244(GPJ0DAT) 点亮
//ldr r0, =0x28// 第一种 缺陷是需要人为计算设定值 可阅读型差 ldr r0, =(<<) |(<<)| (<<)// 等效于 0b0010_1000 即 0x28
ldr r1, =GPJ0DAT
str r0, [r1] //点亮
//第三步: 延迟
bl delay //使用bl进行调用可以将当前执行地址存入lr //第四部:灭
//ldr r0, =0x28// 第一种 缺陷是需要人为计算设定值 可阅读型差 ldr r0, =(<<) |(<<)| (<<)
ldr r1, =GPJ0DAT
str r0, [r1] //熄灭
bl delay
b flash b . //写一个死循环 防止CPU跑飞 delay:
ldr r2, =
ldr r3, =
delay_loop:
sub r2, r2, # //r2=r2-
cmp r2, r3 //cmp 比较r2 r3 如果相等 Z 为1
bne delay_loop //bne 为当Z为1时执行跳转 bne 为 b+后缀
mov pc, lr //函数调用返回 mov 为 寄存器间寻址
反汇编
led.elf: file format elf32-littlearm Disassembly of section .text: <_start>:
: e59f0044 ldr r0, [pc, #] ; 4c <delay_loop+0x10>
: e59f1044 ldr r1, [pc, #] ; 50 <delay_loop+0x14>
: e5810000 str r0, [r1] 0000000c <flash>:
c: e3a00000 mov r0, #
: e59f103c ldr r1, [pc, #] ; 54 <delay_loop+0x18>
: e5810000 str r0, [r1]
: eb000005 bl <delay>
1c: e3a00038 mov r0, # ; 0x38
: e59f102c ldr r1, [pc, #] ; 54 <delay_loop+0x18>
: e5810000 str r0, [r1]
: eb000001 bl <delay>
2c: eafffff6 b c <flash>
: eafffffe b <flash+0x24> <delay>:
: e59f201c ldr r2, [pc, #] ; 58 <delay_loop+0x1c>
: e3a03000 mov r3, # 0000003c <delay_loop>:
3c: e2422001 sub r2, r2, #
: e1520003 cmp r2, r3
: 1afffffc bne 3c <delay_loop>
: e1a0f00e mov pc, lr
4c: tstne r1, r1, lsl r1
: e0200240 eor r0, r0, r0, asr #
: e0200244 eor r0, r0, r4, asr #
: 000f4240 andeq r4, pc, r0, asr # Disassembly of section .ARM.attributes: <.ARM.attributes>:
: 00001a41 andeq r1, r0, r1, asr #
: cmnvs r5, r0, lsl #
: tsteq r0, r2, ror #
c: andeq r0, r0, r0, lsl r0
: ldrbmi r3, [r4, #-] ; 0x505
: stmdaeq r4, {r9, sl}
: Address 0x00000018 is out of bounds.
ARM汇编程序闪烁灯与其反汇编代码比较的更多相关文章
- ARM汇编程序结构
ARM汇编程序结构 一个ARM程序可以被划分为多个代码段和数据段,在汇编的时候这些段会被形成一个可执行文件 .text ;正文段,包含程序的指令代码 .data ;数据段,包含固定的数据,如常量,字符 ...
- arduino--1s间隔闪烁灯
初始使用Arduino,写了这么个小功能:1s间隔闪烁灯 void setup() { pinMode(,OUTPUT);//Set 13Pin as OUTPUT } void loop() { d ...
- ARM汇编程序基本知识
ARM汇编程序基本知识 1.汇编程序的基本组成 ARM汇编语言程序中,程序是以程序段为单位组织代码的.段是相对独立的指令或者代码序列,拥有特定的名称.段的种类有代码段.数据段和通用段,代 码段的内容为 ...
- 51单片机和Arduino—闪烁灯实现
技术:51单片机学习.Keil4环境安装.Arduino环境安装.闪烁灯教程 概述 本文提供51单片机.Arduino单片机入门软件安装和一些需要使用的软件介绍,为后续单片机.嵌入式开发做 ...
- ARM汇编程序中的伪指令
转自http://blog.chinaunix.net/uid-13701930-id-336459.html 4.1 ARM汇编器所支持的伪指令 在ARM汇编语言程序里,有一些特殊指令助记符,这些助 ...
- ARM Cortex-M底层技术(2)—启动代码详解
杂谈 工作了一天,脑袋比较乱.一直想把底层的知识写成一个系列,希望可以坚持下去.为什么要写底层的东西呢?首先,工作用到了这部分内容,最近和内部Flash打交道比较多,自然而然会接触到一些底层的东西:第 ...
- linux下的arm汇编程序
1.gnu 的编译环境搭建 解压编译工具,加入环境变量PATH 2.编译相关命令的使用 编译命令 arm-linux-gcc -g -c -o led.o main.o led.c main.c / ...
- C++反汇编代码分析–函数调用
转载:http://shitouer.cn/2010/06/method-called/ 代码如下:#include “stdlib.h” int sum(int a,int b,int m,int ...
- C++反汇编代码分析--函数调用
推荐阅读: C++反汇编代码分析–函数调用 C++反汇编代码分析–循环结构 C++反汇编代码分析–偷调函数 走进内存,走进汇编指令来看C/C++指针 代码如下: #include "stdl ...
随机推荐
- Paper Reading - CNN+CNN: Convolutional Decoders for Image Captioning
Link of the Paper: https://arxiv.org/abs/1805.09019 Innovations: The authors propose a CNN + CNN fra ...
- POJ 3845 Fractal(计算几何の旋转缩放)
Description Fractals are really cool mathematical objects. They have a lot of interesting properties ...
- 第一课——从main到WinMain
一.Visual C++6.0 由微软公司推出的基于Windows系统的可视化集成开发环境(IDE) 微软公司为其开发了功能强大的MFC(Microsoft Foundation Class,微软基础 ...
- OJ错误命令解释
①Presentation Error (PE) : 虽然您的程序貌似输出了正确的结果,但是这个结果的格式有点问题. 请检查程序的输出是否多了或者少了空格(' ').制表符('\t')或者换行符('\ ...
- 软工1816 · Alpha冲刺(1/10)
团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 前后端代码规范统一 针对之前的alpha冲刺安排进一步细化任务卡片 明确apl ...
- 基于gulp的前端自动化开发构建新
关于gulp的使用,已经在之前写过一篇文章,但是遗留了一个问题.问题是实现文件的增量式更新,就是给html引入的js和css文件打上标记.每次更新标记更新. 上篇文章想通过开发同时实现标记的实时更新, ...
- 【Docker 命令】- images命令
docker images : 列出本地镜像. 语法 docker images [OPTIONS] [REPOSITORY[:TAG]] OPTIONS说明: -a :列出本地所有的镜像(含中间映像 ...
- 第33天:封装自己的class类
封装自己的class类,实现浏览器兼容. <!DOCTYPE html> <html lang="en"> <head> <meta ch ...
- BZOJ 1486 最小圈(01分数规划)
好像是很normal的01分数规划题.最小比率生成环. u(c)=sigma(E)/k.转化一下就是k*u(c)=sigma(E). sigma(E-u(c))=0. 所以答案对于这个式子是有单调性的 ...
- zoj 1298 Domino Effect (最短路径)
Domino Effect Time Limit: 2 Seconds Memory Limit: 65536 KB Did you know that you can use domino ...