计算每一个数的贡献就好了。。O(N)

  n/i只有2*sqrtn个取值于是可以优化到O(sqrtn)

  1. #include<bits/stdc++.h>
  2. #define ll long long
  3. using namespace std;
  4. const int maxn=,inf=1e9;
  5. int n,ans,l,r;
  6. void read(int &k)
  7. {
  8. int f=;k=;char c=getchar();
  9. while(c<''||c>'')c=='-'&&(f=-),c=getchar();
  10. while(c<=''&&c>='')k=k*+c-'',c=getchar();
  11. k*=f;
  12. }
  13. int main()
  14. {
  15. read(n);
  16. for(int i=;i<=n;i=r+)
  17. {
  18. int j=n/i;l=n/(j+)+;r=n/j;
  19. r=min(r,n);
  20. ans+=(r-l+)*j;
  21. }
  22. printf("%d\n",ans);
  23. return ;
  24. }

bzoj1968: [Ahoi2005]COMMON 约数研究(数论)的更多相关文章

  1. BZOJ1968 [Ahoi2005]COMMON 约数研究 数论

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1968 题意概括 求 ΣF(i)   (1<=i<=n)N<=1000000 F( ...

  2. bzoj千题计划170:bzoj1968: [Ahoi2005]COMMON 约数研究

    http://www.lydsy.com/JudgeOnline/problem.php?id=1968 换个角度 一个数可以成为几个数的约数 #include<cstdio> #incl ...

  3. 【数论】bzoj1968 [Ahoi2005]COMMON 约数研究

    对于i属于[1,n],i只能成为[1,n]中n/i个数的约数,易证. #include<stdio.h> int n,i; long long ans; int main() { scan ...

  4. [日常摸鱼]bzoj1968 [Ahoi2005]COMMON 约数研究

    题意:记$f(n)$为$n$的约数个数,求$\sum_{i=1}^n f(i)$,$n \leq 10^6$. 我也不知道为什么我要来做这个- 直接枚举每个数会是哪些数的约数-复杂度$O(n log ...

  5. BZOJ1968 [Ahoi2005]COMMON 约数研究

    Description Input 只有一行一个整数 N(0 < N < 1000000). Output 只有一行输出,为整数M,即f(1)到f(N)的累加和. Sample Input ...

  6. [BZOJ1968][AHOI2005]COMMON约数研究 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1968 直接计算每个因子的贡献就可以了. $Ans=\sum_{i=1}^n[\frac{n ...

  7. B1968 [Ahoi2005]COMMON 约数研究 数论

    大水题,一分钟就做完了...直接枚举1~n就行了,然后在n中判断出现多少次. 题干: Description Input 只有一行一个整数 N(0 < N < 1000000). Outp ...

  8. BZOJ1968: [Ahoi2005]COMMON 约数研究 线性筛

    按照积性函数的定义筛一下这个积性函数即可. #include <cstdio> #include <algorithm> #define N 1000004 #define s ...

  9. BZOJ-1968 COMMON 约数研究 数论+奇怪的姿势

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1513 Solved: 1154 [Submit] ...

随机推荐

  1. Python汉诺塔问题递归算法与程序

    汉诺塔问题: 问题来源:汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从上往下从小到大顺序摞着64片黄金圆盘.上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱 ...

  2. 前端开发工程师 - 02.JavaScript程序设计 - 第2章.进阶篇

    第2章--进阶篇 类型进阶 类型: Undefined Null Boolean String Number Object 原始类型(值类型):undefined, null, true, " ...

  3. Dreamweaver CS5网页制作教程

    说到Dreamweaver这个网页制作神器,不由得想起在学校里上的选修课,那是的我们只知道 table 布局,只知道构建网站最方便的是使用“所见即所得”编辑器.回忆一下,真的是很怀旧啊! 虽说咱现在大 ...

  4. STM32F4 编程手册学习1_编程模型

    STM32F4 programming manual_1 1. 处理器模式与特权等级 处理器模式分为以下两种: 线程模式: 用来执行应用软件: 处理器从reset出来时,进入线程模式: CONTROL ...

  5. node.js应用--转载

    最近,在向大学生们介绍 HTML5 的时候,我想要对他们进行问卷调查,并向他们显示实时更新的投票结果.鉴于此目的,我决定快速构建一个用于此目的的问卷调查应用程序.我想要一个简单的架构,不需要太多不同的 ...

  6. HADOOP docker(七):hive权限管理

    1. hive权限简介1.1 hive中的用户与组1.2 使用场景1.3 权限模型1.3 hive的超级用户2. 授权管理2.1 开启权限管理2.2 实现超级用户2.3 实现hiveserver2用户 ...

  7. MongoDB3.2 集群搭建

    一.集群的理论知识 1.1 集群成员 MongoDB的集群类似于GreenPlum集群,由一个入口节点负责任务分发与结果统计,分片结节负责执行任务.不同GP,多了一个config servers. 集 ...

  8. 自测之Lesson11:消息和消息队列

    题目:key及ftok函数的作用. 解答: key是用来创建消息队列的一个参数,当两个key相同时,创建消息队列会引起“误会”(除非有意为之).所以我们可以通过ftok函数来获得一个“不易重复”的ke ...

  9. About Dynamic Programming

    Main Point: Dynamic Programming = Divide + Remember + Guess 1. Divide the key is to find the subprob ...

  10. django使用ajax提交表单数据报403错解决方法

    只需要在.ajaxSetup方法中设置csrfmiddlewaretoken即可 $.ajaxSetup({ data: {csrfmiddlewaretoken: '{{ csrf_token }} ...