(杭电 1014)Uniform Generator
Uniform Generator
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 35190 Accepted Submission(s): 14002
Problem Description
Computer simulations often require random numbers. One way to generate pseudo-random numbers is via a function of the form
seed(x+1) = [seed(x) + STEP] % MOD
where '%' is the modulus operator.
Such a function will generate pseudo-random numbers (seed) between 0 and MOD-1. One problem with functions of this form is that they will always generate the same pattern over and over. In order to minimize this effect, selecting the STEP and MOD values carefully can result in a uniform distribution of all values between (and including) 0 and MOD-1.
For example, if STEP = 3 and MOD = 5, the function will generate the series of pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this example, all of the numbers between and including 0 and MOD-1 will be generated every MOD iterations of the function. Note that by the nature of the function to generate the same seed(x+1) every time seed(x) occurs means that if a function will generate all the numbers between 0 and MOD-1, it will generate pseudo-random numbers uniformly with every MOD iterations.
If STEP = 15 and MOD = 20, the function generates the series 0, 15, 10, 5 (or any other repeating series if the initial seed is other than 0). This is a poor selection of STEP and MOD because no initial seed will generate all of the numbers from 0 and MOD-1.
Your program will determine if choices of STEP and MOD will generate a uniform distribution of pseudo-random numbers.
Input
Each line of input will contain a pair of integers for STEP and MOD in that order (1 <= STEP, MOD <= 100000).
Output
For each line of input, your program should print the STEP value right- justified in columns 1 through 10, the MOD value right-justified in columns 11 through 20 and either "Good Choice" or "Bad Choice" left-justified starting in column 25. The "Good Choice" message should be printed when the selection of STEP and MOD will generate all the numbers between and including 0 and MOD-1 when MOD numbers are generated. Otherwise, your program should print the message "Bad Choice". After each output test set, your program should print exactly one blank line.
Sample Input
3 5
15 20
63923 99999
Sample Output
3 5 Good Choice
15 20 Bad Choice
63923 99999 Good Choice
本题目就是利用所给递推关系式求出的各项结果是否在[0,MOD-1]之间且没有重复(题目有点长,第一次看题有点迷......)
代码样例
#include <bits/stdc++.h>
using namespace std;
int seed[100001];
int main()
{
int n,m;
while(cin>>n>>m)
{
int i;
seed[0]=0;
for(i=1; i < m; i++)
seed[i]=(seed[i-1]+n)%m;
sort(seed,seed+m);
for(i=0;i<m;i++)
if(seed[i] != i)
break;
printf("%10d%10d",n,m);
if(i == m)
cout<<" Good Choice"<<endl<<endl;
else
cout<<" Bad Choice"<<endl<<endl;
}
return 0;
}
(杭电 1014)Uniform Generator的更多相关文章
- HDU 1014 Uniform Generator(模拟和公式)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1014 Uniform Generator Time Limit: 2000/1000 MS (Java ...
- HDU 1014 Uniform Generator【GCD,水】
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1014:Uniform Generator
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1014 Uniform Generator(题解)
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1014.Uniform Generator 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 题目意思:给出 STEP 和 MOD,然后根据这个公式:seed(x+1) = [seed(x) ...
- HDOJ 1014 Uniform Generator(公约数问题)
Problem Description Computer simulations often require random numbers. One way to generate pseudo-ra ...
- 1014 Uniform Generator
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
- HDU 1014 Uniform Generator 欧几里得
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 解题思路: 1. 把题目意思读懂后,明白会输入两个数,然后根据题中的公式产生一系列伪随机数,看这 ...
- 1014 Uniform Generator ACM
http://acm.hdu.edu.cn/showproblem.php?pid=1014 题目的英文实在是太多了 ,搞不懂. 最后才知道是用公式seed(x+1) = [seed(x) + STE ...
随机推荐
- DataS-2
2.4 证明对任意常数k,(称此式为公式A) 证明: ①当k1<k2时,,因此只需证明正数对公式A成立: ②当k=0或1时,显然有和满足公式A: ③假设k<i (i>1)时,都满足公 ...
- Last_SQL_Error: Error 'Can't drop database 'ABC'; database doesn't exist' on query. Default database: 'ABC'. Query: 'drop database ABC'
查看从库状态发现报错: show slave status\G; 发现是主库上删除了一个数据库,但是从库上面没有,从库执行这个语句的时候失败报错. 解决方法: 停止从库 stop slave; 创建语 ...
- ZT linux 线程私有数据之 一键多值技术
这个原作者的这个地方写错了 且他举的例子非常不好.最后有我的修正版本 pthread_setspecific(key, (void *)&my_errno); linux 线程私有数据之一键多 ...
- Windows Server 2012/2012 R2:安装和配置 SMTP 服务器
Windows Server 2012/2012 R2:安装和配置 SMTP 服务器 安装 SMTP 服务器 以下是安装 SMTP 服务器功能的步骤: 打开“服务器管理器”:单击键盘上的 Window ...
- spring定时器quartz版本问题
如果quartz的版本是1.8.5启动会报错,修改给2.0版本以上即可 <dependency> <groupId>org.quartz-scheduler</group ...
- iOS学习笔记09-核心动画CoreAnimation
http://www.cnblogs.com/liutingIOS/p/5368536.html 一.CALayer CALayer包含在QuartzCore框架中,具有跨平台性,在iOS中使用Cor ...
- 删除oracle实例
1.在开始菜单中,点击ORAHOME目录下的"Configuration and Migration Tools"下的"Database Configuration As ...
- [转]TestNG的多线程并行
前言 最近在做项目里的自动化测试工作,使用的是TestNG测试框架,主要涉及的测试类型有接口测试以及基于业务实际场景的场景化测试.由于涉及的场景大多都是大数据的作业开发及执行(如MapReduce.S ...
- Xcode-push到远程仓库不能使用邮箱名,需使用昵称
1.Xcode-push到远程仓库不能使用邮箱 2.Xcode-push到远程仓库需使用昵称
- XCode: 如何添加自定义代码片段
转载自:http://rockonmycode.com/tips/xcode-code-snippets#more-185 我们经常会定义一些retain的property,而且大概每次我们都会像这样 ...