好题==

先转化一下,每个人被杀死后给他打标记,以后随机杀人时选到有标记的人就继续随机,这样并不会改变每个人被杀死的概率

直接算很难算,考虑容斥,我们枚举$S$表示在$1$死后才死的人至少在集合$S$中,并设$A=\sum\limits_{i=2}^nw_i$,那么它对答案的贡献为$(-1)^{|S|}\sum\limits_{i\geq0}\left(1-\frac{w_1+\sum\limits_{x\in S}w_x}A\right)^i\frac{w_1}A=(-1)^{|S|}\frac{w_1}{w_1+\sum\limits_{x\in S}w_x}$

所以答案为$\sum\limits_{1\notin S}(-1)^{|S|}\frac{w_1}{w_1+\sum\limits_{x\in S}w_x}$

直接算不太好算,但因为$\sum\limits_iw_i\leq10^5$,所以我们考虑对每个不同的$t=\sum\limits_{x\in S}w_x$算出容斥系数之和,容易得出$t=[x^t]\prod\limits_{i=2}^n1-x^{w_i}$,然后就可以直接算了

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const int mod=998244353;
int mul(int a,int b){return(ll)a*b%mod;}
int ad(int a,int b){return(a+b)%mod;}
int de(int a,int b){return(a-b)%mod;}
int pow(int a,int b){
	int s=1;
	while(b){
		if(b&1)s=mul(s,a);
		a=mul(a,a);
		b>>=1;
	}
	return s;
}
int rev[131072],N,iN;
void pre(int n){
	int i,k=0;
	for(N=1,k=0;N<=n;N<<=1)k++;
	for(i=0;i<N;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
	iN=pow(N,mod-2);
}
void ntt(int*a,int on){
	int i,j,k,t,w,wn;
	for(i=0;i<N;i++){
		if(i<rev[i])swap(a[i],a[rev[i]]);
	}
	for(i=2;i<=N;i<<=1){
		wn=pow(3,on==1?(mod-1)/i:mod-1-(mod-1)/i);
		for(j=0;j<N;j+=i){
			w=1;
			for(k=0;k<i>>1;k++){
				t=mul(a[i/2+j+k],w);
				a[i/2+j+k]=de(a[j+k],t);
				a[j+k]=ad(a[j+k],t);
				w=mul(w,wn);
			}
		}
	}
	if(on==-1){
		for(i=0;i<N;i++)a[i]=mul(a[i],iN);
	}
}
int ta[131072],tb[131072];
void conv(int*a,int n,int*b,int m,int*c){
	pre(n+m);
	memset(ta,0,N<<2);
	memcpy(ta,a,(n+1)<<2);
	memset(tb,0,N<<2);
	memcpy(tb,b,(m+1)<<2);
	ntt(ta,1);
	ntt(tb,1);
	for(int i=0;i<N;i++)ta[i]=mul(ta[i],tb[i]);
	ntt(ta,-1);
	memcpy(c,ta,(n+m+1)<<2);
}
int w[100010],s[100010];
int*solve(int l,int r){
	int*res,mid;
	res=new int[s[r]-s[l-1]+1];
	if(l==r){
		memset(res,0,(w[l]+1)<<2);
		res[0]=1;
		res[w[l]]=-1;
		return res;
	}
	mid=(l+r)>>1;
	conv(solve(l,mid),s[mid]-s[l-1],solve(mid+1,r),s[r]-s[mid],res);
	return res;
}
int inv[100010];
int main(){
	int n,i,*p,ans;
	scanf("%d",&n);
	for(i=1;i<=n;i++){
		scanf("%d",w+i);
		s[i]=s[i-1]+w[i];
	}
	p=solve(2,n);
	inv[1]=1;
	for(i=2;i<=s[n];i++)inv[i]=-mul(mod/i,inv[mod%i]);
	ans=0;
	for(i=0;i<=s[n]-w[1];i++)(ans+=(ll)p[i]*w[1]%mod*inv[i+w[1]]%mod)%=mod;
	printf("%d",(ans+mod)%mod);
}

[LOJ2541]猎人杀的更多相关文章

  1. 【LOJ2541】【PKUWC2018】猎人杀(容斥,FFT)

    [LOJ2541][PKUWC2018]猎人杀(容斥,FFT) 题面 LOJ 题解 这题好神仙啊. 直接考虑概率很麻烦,因为分母总是在变化. 但是,如果一个人死亡之后,我们不让他离场,假装给他打一个标 ...

  2. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  3. 「PKUWC2018」猎人杀

    「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...

  4. 【杂题】[LibreOJ 2541] 【PKUWC2018】猎人杀【生成函数】【概率与期望】

    Description 猎人杀是一款风靡一时的游戏"狼人杀"的民间版本,他的规则是这样的: 一开始有 n个猎人,第 i 个猎人有仇恨度 wi.每个猎人只有一个固定的技能:死亡后必须 ...

  5. LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)

    考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...

  6. loj2541【PKUWC2018】猎人杀

    题解 题目中的选择条件等价于正常选择所有猎人,而如果选到已经出局的猎人就继续选: 这两种选法是一样的因为(设$W=\sum_{i=1}^{n}w_{i}$ , $X$为已经出局的猎人的$w$之和): ...

  7. loj2541 「PKUWC2018」猎人杀 【容斥 + 分治NTT】

    题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\l ...

  8. LOJ2541 PKUWC2018 猎人杀 期望、容斥、生成函数、分治

    传送门 首先,每一次有一个猎人死亡之后\(\sum w\)会变化,计算起来很麻烦,所以考虑在某一个猎人死亡之后给其打上标记,仍然计算他的\(w\),只是如果打中了一个打上了标记的人就重新选择.这样对应 ...

  9. [LOJ2541]「PKUWC2018」猎人杀

    loj description 有\(n\)个猎人,每个猎人有一个仇恨度\(w_i\),每个猎人死后会开一枪打死一个还活着的猎人,打中每个猎人的概率与他的仇恨度成正比. 现在你开了第一枪,打死每个猎人 ...

随机推荐

  1. Spring Cloud Netflix之Eureka 相关概念

    为什么不应该使用ZooKeeper做服务发现 英文链接:Eureka! Why You Shouldn’t Use ZooKeeper for Service Discovery:http://www ...

  2. python基础===jieba模块,Python 中文分词组件

    api参考地址:https://github.com/fxsjy/jieba/blob/master/README.md 安装自行百度 基本用法: import jieba #全模式 word = j ...

  3. 可以高度定制的代理服务器anyproxy

    简介 anyproxy是一款可以高度定制的代理服务器,基于nodejs. 特征 支持https明文代理 支持低网速模拟 支持二次开发,可以用javascript控制代理的全部流程,搭建前端个性化调试环 ...

  4. Pretrained models for Pytorch (Work in progress)

    The goal of this repo is: to help to reproduce research papers results (transfer learning setups for ...

  5. 方便大家学习的Node.js教程(一):理解Node.js

    理解Node.js 为了理解Node.js是如何工作的,首先你需要理解一些使得Javascript适用于服务器端开发的关键特性.Javascript是一门简单而又灵活的语言,这种灵活性让它能够经受住时 ...

  6. [How to] UIScrollView的使用方法

    1.简介 代码 延续前一个博客使用Xib来创建view,本文我们创建一个带有PageControlView的ScrollView的table的headView,如下图: 具有自动滚动: 具有拖拽完毕后 ...

  7. leetcode 之LRU Cache(26)

    很实际的一道题.定义一个双向链表list,方便插入和删除:定义一个哈希表,方便查找. 具体的,哈希表存放每个结点的key和它对应的结点的地址:访问结点时,如果结点存在,则将其交换到头部,同是更新哈希表 ...

  8. 一台服务器支持多少TCP并发链接

    误区一 1.文件句柄---文件描述符 每开一个链接,都要消耗一个文件套接字,当文件描述符用完,系统会返回can't  open so many files 这时你需要明白操作系统对可以打开的最大文件数 ...

  9. AIOps实践三板斧:从可视化、自动化到智能化

    http://ai.51cto.com/art/201806/576881.htm?mobile

  10. 根据C# 事件思想来实现 php 事件

    事件定义 当我们使用委托场景时,我们很希望有这样两个角色出现:广播者和订阅者.我们需要这两个角色来实现订阅和广播这种很常见的场景. 广播者这个角色应该有这样的功能:包括一个委托字段,通过调用委托来发出 ...