题目名字是什么就不能往那方面想。

每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链。

使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右下方的所有点都有边。

从右上往左下DP统计答案即可。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int T,n,m,a[N][N],dp[N][N]; int main(){
freopen("bzoj3997.in","r",stdin);
freopen("bzoj3997.out","w",stdout);
for (scanf("%d",&T); T--; ){
scanf("%d%d",&n,&m);
rep(i,,n) rep(j,,m) scanf("%d",&a[i][j]);
rep(i,,m+) dp[][i]=;
rep(i,,n) dp[i][m+]=;
rep(i,,n) for (int j=m; j; j--) dp[i][j]=max(dp[i-][j+]+a[i][j],max(dp[i-][j],dp[i][j+]));
printf("%d\n",dp[n][]);
}
return ;
}

[BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)的更多相关文章

  1. 【BZOJ3997】【TJOI2015】组合数学 Dilworth定理 DP

    题目描述 有一个\(n\times m\)的网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完. 此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子 ...

  2. 【bzoj3997】[TJOI2015]组合数学 Dilworth定理结论题+dp

    题目描述 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  3. BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)

    Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一 ...

  4. BZOJ3997 TJOI2015组合数学(动态规划)

    copy: Dilworth定理:DAG的最小链覆盖=最大点独立集 最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中 最大点独立集指最大的集合使集合中任意两点不可达 此题中独立的定义即是 ...

  5. BZOJ3997: [TJOI2015]组合数学(网络流)

    3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 405  Solved: 284[Submit][Status ...

  6. BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】

    题目 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少 ...

  7. bzoj3997[TJOI2015]组合数学(求最长反链的dp)

    组合数学 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  8. bzoj3997[TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 偏序集,看上一篇随笔. 我们要求最少路径覆盖,可以等价于求最大独立集. 我们要找到一个权值和最 ...

  9. bzoj千题计划298:bzoj3997: [TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 最小链覆盖=最长反链长度 所以题目等价于寻找一条从右上角到左下角的最长路 #include&l ...

随机推荐

  1. JS中的表单验证+正则表达式

    表单验证+正则表达式 一.非空验证 trim:去空格(去掉前后的空格),任何字符串都可以用这个方法.写法为:if(v.trim().length==0),表示如果去掉空格后的字符串的长度为0. < ...

  2. HDU 1159 Common Subsequence (dp)

    题目链接 Problem Description A subsequence of a given sequence is the given sequence with some elements ...

  3. 24、redis中的sentinel的作用?

    redis中的sentinel的作用? Redis-Sentinel是Redis官方推荐的高可用性(HA)解决方案,当用Redis做Master-slave的高可用方案时,假如master宕机了,Re ...

  4. textarea输入框实时统计输入字符数

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. zoj2001 Adding Reversed Numbers

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2001 Adding Reversed Numbers Time ...

  6. 生成应用的快捷方式action,权限

    action:"com.android.launcher.action.INSTALL_SHORTCUT" 权限:com.android.launcher.permission.I ...

  7. Linux的SMP,UMA,NUMA

    SMP 是Symmetric Multi-Processing的意思,对称多处理器,一种多核结构,认为这些核是完全同构的,任务可以随便在任一个核上跑. UMA是Uniform Memory Acces ...

  8. 自己动手一步步安装Linux系统

    自己动手一步步安装Linux系统 http://502245466.blog.51cto.com/7559397/1291910/

  9. python_day4学习笔记

    一.内置函数

  10. LeetCode解题报告—— Interleaving String

    Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. Example 1: Input: s1 = ...