更正了我之前打错的地方,有边的话G[i][j]=-1;

WA了好多次,中间要转成long double才行。。这个晚点更新。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std; typedef long double ld; const int N=;
const ld eps=1e-;
int map[N][N];
ld G[N][N]; ld myabs(ld x){return x> ? x:-x;} ld guass(int n)
{
ld ans=;
for(int i=;i<=n;i++)
{
int r=i;
for(int j=i+;j<=n;j++)
if(myabs(G[j][i]) > myabs(G[r][i])) r=j;
if(r!=i)
{
for(int j=;j<=n;j++) swap(G[i][j],G[r][j]);
ans*=-;
}
if(myabs(G[i][i])<eps) return ;
for(int j=i+;j<=n;j++)
for(int k=n;k>=i;k--)
G[j][k]-=G[j][i]/G[i][i]*G[i][k];
}
for(int i=;i<=n;i++) ans*=G[i][i];
return myabs(ans);
} int main()
{
//freopen("a.in","r",stdin);
int n,m,k;
while(scanf("%d%d%d",&n,&m,&k)!=EOF)
{
int x,y;
memset(map,,sizeof(map));
memset(G,,sizeof(G));
for(int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
map[x][y]=map[y][x]=;
}
for(int i=;i<=n;i++)
for(int j=;j<i;j++)
if(!map[i][j])
{
G[i][j]=-;G[j][i]=-;
G[i][i]++;G[j][j]++;
}
printf("%.0lf\n",(double)guass(n-));
}
return ;
}

uva10766生成树计数(矩阵树定理)的更多相关文章

  1. spoj104 highways 生成树计数(矩阵树定理)

    https://blog.csdn.net/zhaoruixiang1111/article/details/79185927 为了学一个矩阵树定理 从行列式开始学(就当提前学线代了.. 论文生成树的 ...

  2. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  3. 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)

    传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...

  4. BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...

  5. luoguP4208 [JSOI2008]最小生成树计数 矩阵树定理

    题目大意: 求最小生成树的数量 曾今的我感觉这题十分的不可做 然而今天看了看,好像是个类模板的题.... 我们十分容易知道,记能出现在最小生成树中的边的集合为\(S\) 那么,只要是\(S\)中的边构 ...

  6. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  7. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  8. 【bzoj2467】[中山市选2010]生成树 矩阵树定理

    题目描述 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈 ...

  9. BZOJ 1016 最小生成树计数(矩阵树定理)

    我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很 ...

随机推荐

  1. shiro控制登陆成功后跳回之前的页面

    登陆之后跳回之前的页面是在做登陆注册模块时遇到的一个需求,也是很有必要的.若用户直接访问登陆页面,那可以控制它直接到首页,但是要用户没有登陆直接访问自己的购物车等需要经过身份认证的页面,或者因为ses ...

  2. LR脚本编写时的几个小技巧

    参数化空值 如上图所示,当参数化时某个值需要为空值(非空格),直接在参数化文件中空一行/格即可,虽然Parameter List界面上没有显示空的那一行,但并不影响取值. 手工日志跟踪 lr_set_ ...

  3. ubuntu 安装xdebug

    Add XDebug to Ubuntu 14.04 Submitted by Wilbur on Tue, 06/17/2014 - 12:49pm It's pretty easy to add ...

  4. 【Docker 命令】- rmi命令

    docker rmi : 删除本地一个或多个镜像. 语法 docker rmi [OPTIONS] IMAGE [IMAGE...] OPTIONS说明: -f :强制删除: --no-prune : ...

  5. touchSwipe 上下左右滑动,二指缩放 效果不好。

    $(function(){ var _showImgW; var _showImgH; var _showImgMT; var _showImgML; $("#imgDiv").s ...

  6. React & event-pooling & bug

    React & event-pooling & bug event-pooling https://reactjs.org/docs/events.html#event-pooling ...

  7. MyBatis事务管理机制

    MyBatis作为Java语言的数据库框架,对数据库的事务管理是其非常重要的一个方面.   本文将讲述MyBatis的事务管理的实现机制,首先介绍MyBatis的事务Transaction的接口设计以 ...

  8. HTML5拖拽表格中单元格间的数据库

    效果图:

  9. iOS-学习UIKIt框架的重要性

      前言: 众所周知,我们的移动设备的屏幕上可以展示很多图形界面,作为用户的我们可以通过屏幕上的图形界面浏览信息,也可以通过与图形界面的简单交互,在移动设备上实现各种各样的功能操作.....可以说,没 ...

  10. 【bzoj5094】硬盘检测 乱搞

    题目描述 已知从 $n$ 个不同的32位无符号整数中随机选 $m=10000$ 次所得的结果,求可能性最大的 $n$ ,其中 $n=10^k,1\le k\le 7$. 输入 第一行包含一个正整数m( ...