在 Solidity 中 ++i 为什么比 i++ 更省 Gas?
前言
作为一个初学者,“在 Solidity 中 ++i 为什么比 i++ 更省 Gas?” 这个问题始终在每个寂静的深夜困扰着我。也曾在网上搜索过相关问题,但没有得到根本性的解答。最终决定扒拉一下它们的字节码,从较为底层的层面看一下它们的差别究竟在哪里。
Solidity 代码选择
Solidity 版本选用了 0.8.4
(随手选的没啥说法),代码选用了两个简单的合约,分别是 Test(i++)
和 Test2(++i)
,两个合约都有一个全局变量 i
,修改值的时候从 storage
中取值然后进行修改。选择全局变量的这个形式是想要通过定位 SLOAD
和 SSTORE
两个比较有特征的操作码来进行比较。当然,这个只是我知识浅薄的脑瓜子想出来的一个代码形式,如果有更好的更直接明了的代码形式也十分欢迎各位师傅提出来交流交流。
Solidity Code:
pragma solidity 0.8.4;
contract Test{
uint256 i = 0;
// 0xfb5343f3
function t1() public {
i++;
}
}
contract Test2{
uint256 i = 0;
// 0xbaf2f868
function t2() public {
++i;
}
}
RuntimeCode 分析
Solidity 代码经过编译以后,截取两个合约的 RuntimeCode,注意是 RuntimeCode 而不是包括 CreationCode 的所有代码。否则在后面看地址转跳的时候会对不上号。
OK,拿到了字节码。我们简单地从长度比较上面就可以看出两个合约的字节码是不一样的,但是具体怎么不一样,不一样发生在什么地方,就需要进行进一步的分析。
Test Contract RuntimeCode:
6080604052348015600f57600080fd5b506004361060285760003560e01c8063fb5343f314602d575b600080fd5b60336035565b005b6000808154809291906045906056565b9190505550565b6000819050919050565b6000605f82604c565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff821415608f57608e609a565b5b600182019050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fdfea264697066735822122036565a2f31dfc56ec3a1576d52790574b00eea2721561ecdc6581a7c865a382564736f6c63430008040033
Test2 Contract RuntimeCode:
6080604052348015600f57600080fd5b506004361060285760003560e01c8063baf2f86814602d575b600080fd5b60336035565b005b60008081546041906054565b91905081905550565b6000819050919050565b6000605d82604a565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff821415608d57608c6098565b5b600182019050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fdfea2646970667358221220a395400661088056760f04d1c0d531d36c787fe81f654b35987819f5b3a4e36564736f6c63430008040033
Operation Code 分析
当然也不至于手撕字节码,所以下一步就是把字节码翻译成操作码(Operation Code)来分析。推荐去 dedaub(https://library.dedaub.com/decompile)上面反编译一下。由于OP Code太长,考虑到文章篇幅就不贴上来了,朋友们可以自己去操作一下。
但是!我根据 OP Code 做了两个图,去掉了一些不重要的结束分支,保留了主干。其中标有红蓝两种颜色的代码块表示此处出现不同的操作。其余没有标记颜色的代码块操作基本相同。(说基本相同是因为红蓝颜色代码块的长度不同,导致整体的地址发生了一些偏移。操作是一样的,只是跳转的地址相应地存在一点偏移。)而且刚刚好, SLOAD
和 SSTORE
两个操作码正好处于这两个不一样的代码块中,那说明 i++
和 ++i
这两个操作在取值后和赋值前这两个地方会出现差异。
现在两个合约的不同点已经找出来了。接下来我们把标有颜色的代码块取出来,结合运行到此处时堆栈的变化,进行进一步的对比分析。
堆栈的分析工具可以用 evm.codes (https://www.evm.codes/playground),把字节码贴上去,配置好函数选择器就可以单步调试了。但是这里还有一个问题,就是用 remix 的 debug 调试的时候操作码的地址与反编译出来的地址对不上号,用 evm.codes 倒是完美对上。希望有头绪的师傅可以指点一下这到底是怎么回事。
接下来看对比图。为了更好地分析堆栈的变化,选择了当 i = 1
时的状态来进行 +1 操作对比。这是为了避免当 i = 0
时读取进来的 0
值不够显眼,容易与堆栈中的其他 0
值混淆。0x3a Stack
代表当代码运行完 0x3a
这个位置的操作码后,堆栈 Stack
中的情况。
先看左边,当 i = 1
时,进行 i++
操作。从左上角的代码块可以看出,0x3a
处的 SLOAD
指令从 solt
中取出 i
的值存放在堆栈顶。然后 0x3b
处的 DUP1
将栈顶 i
的值进行复制。随后的几个 SWAP
操作把复制出来的值交换到堆栈的第 4 位处。随后程序运行到左下的代码块中。当程序运行到 0x48
处时,此时栈顶的 0
为 i
的 slot
位置,堆栈第 2 位为 i++
后的值,堆栈第 3 位是在 0x3b
处 i
进行 +1 操作前复制出来的 i
值。随后 0x49
处的 SSTORE
操作将 2
存放到 solt 0
中。
然后右边,当 i = 1
时,进行 ++i
操作。从右上角的代码块可以看出,0x3a
处的 SLOAD
指令从 solt
中取出 i
的值存放在堆栈顶。随后程序运行到左下的代码块中。当程序运行到 0x44
处,此时栈顶的 0
为 i
的 slot
位置,堆栈第 2 位为 i++
后的值。随后 0x45
处的 DUP2
操作将堆栈第 2 位的 2
值复制并存放的栈顶。随后 0x46
的 SWAP1
操作将其堆栈 1, 2 位的值调换。此时堆栈的第 3 位是 i
进行 +1 后的值。0x47
处的 SSTORE
指令将 2
值存放到 solt 0
中。
上面的解释可能稍微有点绕,有简单版的。
简单的理解可以把 i++
的操作类似于:
uint256 j = i;
i = i + 1;
// store 'i', keeep 'j'
因为我们可以通过堆栈中的情况看到,在执行完 0x3a: SLOAD
这个操作后,马上执行 0x3b: DUP1
对取出来的 i
值进行一个复制,就相当于 uint256 j = i;
,而随后对 i
的值进行 +1 操作,并不影响复制出来 j
的值。当执行完 0x49: SSTORE
后,堆栈顶的 1
值就是 0x3b: DUP1
复制出来的 j
。
而 ++i
的操作则类似于:
i = i + 1;
// store 'i', keep 'i' copy value
当代码运行到 0x44
处时,栈顶的 0
为 i
的 slot
位置,堆栈第 2 位为 i++
后的值。然后 0x45: DUP2
对 i
值进行了复制,利用 0x46: SWAP1
调整完顺序以后执行 0x47: SSTORE
保存。此时,栈顶的 2
值就是 0x45: DUP2
复制出来的进行过 +1 操作后的 i
值。
好!话说回来!
那么到底为什么在 Solidity 中 ++i
为什么比 i++
更省 Gas 呢?我们看代码对比(比较图中的黄色代码)可以看出,当执行 i++
的时候,要比 ++i
多执行一个 SWAP2
和一个 SWAP3
,而每个 SWAP*
固定的消耗为 3 gas。
所以可以得出,以本文的案例 Test
合约与 Test2
合约为例,执行一遍 i++
要比 ++i
多消耗 6 gas,如下图所示:
就是这样。
后记
诶终于把这篇文章写出来了,疑问是一直的疑问,但是搜出来的答案也流于表面没有具体讲明白。然后就自己分析着玩吧,分析之前也不知道能不能搞得懂。但在分析的过程中还是挺兴奋的,一直慢慢摸索,也踩了很多坑(有些坑现在还没搞明白)。最终还是把想知道的东西弄明白了,也希望能够把它分享给你~能看到最后的你很棒哦:D!然后,也是希望自己能够继续抱有热情继续学习下去吧,在捣弄这些玩意的时候确实能够将自己从现实的失落中暂时的抽离出来。最后,下一篇文章也不知道是什么时候了,想写,但是也不知道写什么,总觉得自己没啥东西,还是要多学点东西吧写个博客都把自己写得江郎才尽了。
在 Solidity 中 ++i 为什么比 i++ 更省 Gas?的更多相关文章
- Solidity 中文文档 —— 第一章:Introduction to Smart Contracts
第一章:智能合约简介 粗略地翻译了 Ethereum 的智能合约开发语言的文档:Solidity.欢迎转载,注明出处. 有任何问题请联系我,本人微信:wx1076869692,更多详情见文末. 我是 ...
- Solidity中的基本类型转换
Solidity中的基本类型转换(十四)|入门系列 2017/4/29 posted in Solidity入门系列 点击查看原文,获得优化的排版. 隐式转换 如果一个运算符能支持不同类型.编译器会隐 ...
- C#中的快捷键,可以更方便的编写代码 (转载)
C#中的快捷键,可以更方便的编写代码 CTRL + SHIFT + B 生成解决方案 CTRL + F7 生成编译 CTRL + O 打开文件 CTRL + SHIFT + O 打开项目 CTRL + ...
- Solidity中uint转string
在<Solidity中uint转bytes>中,我们知道unit如何转换成bytes,其实把uint转换成string,就是在最后加上string(bytes变量)即可,如下所示: pra ...
- Solidity中uint转bytes
Solidity中uint转bytes方法如下: pragma solidity ^0.4.2; contract Test { function toBytesNickJohnson(uint256 ...
- C#中的快捷键,可以更方便的编写代码
C#中的快捷键,可以更方便的编写代码 CTRL + SHIFT + B 生成解决方案 CTRL + F7 生成编译 CTRL + O 打开文件 CTRL + SHIFT + O 打开项目 CTRL + ...
- Solidity中如何判断mapping中某个键是否为空呢?
Solidity中如何判断mapping中某个键是否为空呢? 一.比较标准的做法是建立一个专门和value相关的结构体,用一个布尔型变量来看是否这个key所对应的value被赋过值 代码如下: pra ...
- 在 Snoop 中使用 PowerShell 脚本进行更高级的 UI 调试
原文:在 Snoop 中使用 PowerShell 脚本进行更高级的 UI 调试 版权声明:本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可.欢迎转载.使用.重新发布, ...
- 文件的权利和sudoers中规定的权限哪个更大?
文件的权利和sudoers中规定的权限哪个更大? 当然是文件的权限更大!!! 这也是linux的 更安全的根本所在! 就是它的每一个文件都有严格的 rwxr--r-- 权限规定. 只有文件权限规定了的 ...
- 如何在Android开发中让你的代码更有效率
最近看了Google IO 2012年的一个视频,名字叫做Doing More With Less: Being a Good Android Citizen,主要是讲如何用少少的几句代码来改善And ...
随机推荐
- HDFS 伪分布式环境搭建
HDFS 伪分布式环境搭建 作者:Grey 原文地址: 博客园:HDFS 伪分布式环境搭建 CSDN:HDFS 伪分布式环境搭建 相关软件版本 Hadoop 2.6.5 CentOS 7 Oracle ...
- 【读书笔记】C#高级编程 第二章 核心C#
(一)第一个C#程序 创建一个控制台应用程序,然后输入代码,输入完毕后点击F5 Console.WriteLine();这条语句的意思:把括号内的内容输出到界面上: Console.ReadKey() ...
- 利用 Gitea Doctor自助诊断工具帮助管理员排查问题
我常常在Gitea论坛或者Hostea为网友解答Gitea版本升级方面的问题,但发现少有人知道利用 gitea doctor 命令行工具排查问题,因此这篇博文将给大家带来通俗易懂的介绍. 你知道吗? ...
- 题解 P2471 【[SCOI2007]降雨量】
原题传送门 前置芝士 离散化 ST表和RMQ问题 二分 正文 首先我们来分析一下题意. 题目会给出两个大小为 \(n\) 的数组,\(y\) 和 \(r\) ,其中 \(y_i\) 表示第 \(i\) ...
- 关于使用kuboard安装其自带的监控应用的注意事项
在安装过程中若想监控kube-controller-manager和kube-scheduler,需要按步骤中的如下说明操作 在这里,所有master节点的这俩文件都需要修改,不用apply,等一分钟 ...
- k8s集群中安装rook-ceph
容器的持久化存储 容器的持久化存储是保存容器存储状态的重要手段,存储插件会在容器里挂载一个基于网络或者其他机制的远程数据卷,使得在容器里创建的文件,实际上是保存在远程存储服务器上,或者以分布式的方式保 ...
- 在Ubuntu 主机上使用 Cockpit 管理容器
如果你管理着一台 Linux 服务器,那么你可能正在寻找一个可靠的管理工具.为了这个你可能已经看了 Webmin 和 cPanel 这类软件.但是,如果你正在寻找一种简单的方法来管理还包括了 Dock ...
- 内网横向渗透 之 ATT&CK系列一 之 拿下域控制器
信息收集 信息收集 域控制器的相关信息: 通过arp扫描发现域控制器的ip地址为:192.168.52.138,尝试使用msf的smb_login模块登录smb是否成功 1 search smb_lo ...
- Go 源码解读|如何用好 errors 库的 errors.Is() 与 errors.As() 方法
前言 快一个月没有更新技术文章了,这段时间投注了较多的时间学习字节的开源项目 Kitex/Hertz ,并维护一些简单的 issue ,有兴趣的同学也可以去了解: https://www.cloudw ...
- 知识图谱实体对齐1:基于平移(translation)的方法
1 导引 在知识图谱领域,最重要的任务之一就是实体对齐 [1](entity alignment, EA).实体对齐旨在从不同的知识图谱中识别出表示同一个现实对象的实体.如下图所示,知识图谱\(\ma ...