Netty 是一个异步的、基于事件驱动的网络应用框架,用以快速开发高性能、高可靠性的网络 IO 程序。

一、异步模型

同步I/O : 需要进程去真正的去操作I/O;

异步I/O:内核在I/O操作完成后再通知应用进程操作结果。

怎么去理解同步和异步?

  • 同步:比如服务端发送数据给客户端,客户端中的处理器(继承一个入站处理器即可),可以去重写 channelRead0 方法,那么该方法触发的时候,其实必须得服务器有消息发过来,客户端才能去读写,两者必须是有先后顺序,这就是所谓的同步
  • 异步:客户端在服务端发送数据来之前就已经返回数据给了用户,但客户端已经告诉服务端数据到了要通过订阅的方式(大名鼎鼎的观察者模式),文章最后已经附上传送门,理解设计模式

比如上一篇关于NettyAttributeKeyAttributeMap的原理和使用,这里不妨讲讲它的缺点

二、异步模型存在的问题

使用流程

Step1 使用 AttributeKey 设置 key 值和 k-v 对,为 channel 获取 值做准备

创建一个处理器 NettyClientHandler 继承 SimpleChannelInboundHandler<RpcResponse>,它已经实现了 入站处理器相关的功能,只要重写它的 channelRead0 方法即可

public class NettyClientHandler extends SimpleChannelInboundHandler<RpcResponse> {
@Override
protected void channelRead0(ChannelHandlerContext ctx, RpcResponse msg) throws Exception {
try {
AttributeKey<RpcResponse> key = AttributeKey.valueOf(msg.getRequestId());
ctx.channel().attr(key).set(msg);
ctx.channel().close();
} finally {
ReferenceCountUtil.release(msg);
}
}
}

记得将该 处理器 加入到 客户端 bootStraphandler()方法中,需要 通过默认的 初始化器new ChannelInitializer<SocketChannel>()(也是一个处理器)去初始化处理器链,我是通过匿名内部类去重写 initChannel 方法的,最后addLast() 刚刚自己写的处理器即可。

创建服务器和客户端,这里不再赘述,这篇文章对刚入门的帮助不大,可到文章最后取经拿服务端和客户端。

Step2 使用 channel 的 attr 方法,获取 k-v 值

客户端这里NettyClient 通过用户调用 sendRequest() 方法,去向服务端发送信息,返回值是服务端发回的消息,我们都知道,信息都是在处理器获取的,也就是在channelRead0方法中,所以我们要在sendRequest()方法中,获取服务端传来的值,通过下面代码获取

@Override
public Object sendRequest(RpcRequest rpcRequest) throws RpcException {
// 通过 host 和 port 获取 channel
//省略
// 写入 channel 让 服务端 去 读 request
channel.writeAndFlush(rpcRequest);
// 获取 k-v 对
RpcResponse rpcResponse = channel.attr(key).get();
}

相信你们当中有一部分发觉了异样,sendRequest()方法和channelRead0()不会同步,就是说你发送数据后,会立马执行到 获取 k-v 的代码,不能阻塞住等待 channelRead0()方法把 k-vset 进去

最后测试到,客户端拿不到值,总是为null

那怎么保持使用异步操作,并且可以顺利拿到值呢?

那么就得通过future来实现,就是先返回值,但值还是没有的,后面让用户自己用future的方法get阻塞拿值,说白了,还是要去同步,只是同步由CPU转到了用户自己手中,慢慢品

三、使用CompletableFuture 解决异步问题

CompletableFuture 使用方法

CompletableFuture<RpcResponse> resultFuture = new CompletableFuture<>();
/**complete 执行结束后,状态发生改变,则 说明 值已经传到了,complete 是 (被观察者)
通知类的通知方法,通知 观察者 ,get 方法将 不再阻塞,可以获取到值
*/
resultFuture .complete(msg);
/**获取 正确结果,get 是阻塞操作,所以 先把 resultFuture 作为 返回值 返回,再 get
获取值
*/
RpcResponse rpcResponse = resultFuture.get();
// 获取 错误结果, 抛 异常 处理
resultFuture.completeExceptionally(future.cause());

所以我们要做的就是在channelRead0()中 做 complete(),最后 用户直接 get得到数据即可,只要把sendRequest()方法的返回类型改为CompletableFuture 就可以了。

简单来说就是通过使用这个CompletableFuture,让 response不至于返回后是null,因为我们自己new了一个CompletableFuture类,这个类会被通知,并把结果告知给它

需要注意的是,在 客户端的sendRequest()方法拿到的 CompletableFuture<RpcResponse> 和在channelRead0()拿到的必须为同一个,可以设计成单例模式,这里是很泛化的单例,通用

public class SingleFactory {

private static Map<Class, Object> objectMap = new HashMap<>();

private SingleFactory() {}

/**
* 使用 双重 校验锁 实现 单例模式
* @param clazz
* @param <T>
* @return
*/
public static <T> T getInstance(Class<T> clazz) {
Object instance = objectMap.get(clazz);
if (instance == null) {
synchronized (clazz) {
if (instance == null) {
try {
instance = clazz.newInstance();
} catch (InstantiationException | IllegalAccessException e) {
throw new RuntimeException(e.getMessage(), e);
}
}
}
}
return clazz.cast(instance);
} }

下面这样实现是因为涉及到多个客户端并发访问同一个服务器,设计的原因如下:

  • 如果是同一个客户端要采用发起多个线程去请求服务端,设计时如果多个线程的rpcRequest请求id一样,那么要考虑线程安全
  • 如果是不同客户端发起请求服务端,又要保证线程之间对CompleteFuture是线程安全的,确保性能,不能用让所有线程共享同一个 CompleteFuture,这样通知会变为不定向,不可用,因此考虑使用map暂时缓存所有CompleteFuture,更加高效
public class UnprocessedRequests {

/**
* k - request id
* v - 可将来获取 的 response
*/
private static ConcurrentMap<String, CompletableFuture<RpcResponse>> unprocessedResponseFutures = new ConcurrentHashMap<>(); /**
* @param requestId 请求体的 requestId 字段
* @param future 经过 CompletableFuture 包装过的 响应体
*/
public void put(String requestId, CompletableFuture<RpcResponse> future) {
System.out.println("put" + future);
unprocessedResponseFutures.put(requestId, future);
} /**
* 移除 CompletableFuture<RpcResponse>
* @param requestId 请求体的 requestId 字段
*/
public void remove(String requestId) {
unprocessedResponseFutures.remove(requestId);
} public void complete(RpcResponse rpcResponse) {
CompletableFuture<RpcResponse> completableFuture = unprocessedResponseFutures.remove(rpcResponse.getRequestId());
completableFuture.complete(rpcResponse);
System.out.println("remove" + completableFuture);
}
}

传送门:

设计模式:https://gitee.com/fyphome/git-res/tree/master/design-patterns

或者:https://github.com/Fyupeng/java/tree/main/design_patterns

服务端和客户端的实现:https://github.com/Fyupeng/java/tree/main/NettyPro/src/main/java/com/fyp/netty/groupchat

四、结束语

评论区可留言,可私信,可互相交流学习,共同进步,欢迎各位给出意见或评价,本人致力于做到优质文章,希望能有幸拜读各位的建议!

与51cto同步:https://blog.51cto.com/fyphome

与csdn同步:https://blog.csdn.net/F15217283411



交流技术,寻求同志。

—— 嗝屁小孩纸 QQ:1160886967

Netty之非阻塞处理的更多相关文章

  1. Netty基础系列(2) --彻底理解阻塞非阻塞与同步异步的区别

    引言 在进行I/O学习的时候,阻塞和非阻塞,同步和异步这几个概念常常被提及,但是很多人对这几个概念一直很模糊.要想学好Netty,这几个概念必须要掌握清楚. 同步和异步 同步与异步的区别在于,异步基于 ...

  2. suging闲谈-netty 的异步非阻塞IO线程与业务线程分离

    前言 surging 对外沉寂了一段时间了,但是作者并没有闲着,而是针对于客户的需要添加了不少功能,也给我带来了不少外快收益, 就比如协议转化,consul 的watcher 机制,JAVA版本,sk ...

  3. NIO学习笔记,从Linux IO演化模型到Netty—— 究竟如何理解同步、异步、阻塞、非阻塞

    我的观点 首先,分开各自理解. 1. 同步:描述两个(或者多个)个体之间的协调关系. 比如,单线程中,methodA调用了methodB,methodB返回后,methodA才往下执行,那么称A同步调 ...

  4. Java IO(3)非阻塞式输入输出(NIO)

    在上篇<Java IO(2)阻塞式输入输出(BIO)>的末尾谈到了什么是阻塞式输入输出,通过Socket编程对其有了大致了解.现在再重新回顾梳理一下,对于只有一个“客户端”和一个“服务器端 ...

  5. 一文读懂阻塞、非阻塞、同步、异步IO

    介绍 在谈及网络IO的时候总避不开阻塞.非阻塞.同步.异步.IO多路复用.select.poll.epoll等这几个词语.在面试的时候也会被经常问到这几个的区别.本文就来讲一下这几个词语的含义.区别以 ...

  6. nio 阻塞 非阻塞 同步 异步

    https://mp.weixin.qq.com/s/5SKgdkC0kaHN495psLd3Tg 说在前面 上篇NIO相关基础篇二,主要介绍了文件锁.以及比较关键的Selector,本篇继续NIO相 ...

  7. 简易非阻塞http服务器

    说明         需要理解阻塞和非阻塞的区别,特别要注意非阻塞和异步不是一个概念,这个很容易弄错.云盘里面netty的书会讲这几个方面的区别,nodejs深入浅出关于异步编程章节里面       ...

  8. I/O模型(同步、非同步、阻塞、非阻塞)总结

    I/O:同步(synchronous).异步(asynchronous).阻塞(blocking).非阻塞(nonblocking) 1.I/O内部机制 出于安全考虑,用户程序(用户态)是没办法直接操 ...

  9. Java网络编程和NIO详解5:Java 非阻塞 IO 和异步 IO

    Java网络编程和NIO详解5:Java 非阻塞 IO 和异步 IO Java 非阻塞 IO 和异步 IO 转自https://www.javadoop.com/post/nio-and-aio 本系 ...

随机推荐

  1. 【Windows身份认证】NTLM

    前言 前几天自己在学习域渗透时突然对Windows的身份认证机制产生了兴趣,但看了好几天自己还是懵懵懂懂,期间自己看了许多师傅的优质文章,也做了一些例子的复现,于是有了这篇文章,可以说是自己的笔记或总 ...

  2. java8 如何优化CAS的性能

    场景引入 经常都会有下面这段代码,多个线程同时修改一个变量,造成线程不安全,代码如下: public class ThreadCASDemo implements Runnable { static ...

  3. C#基于Redis实现分布式锁

    [本博客属于原创,如需转载,请注明出处:https://www.cnblogs.com/gdouzz/p/12097968.html] 最近研究库存的相关,在高峰期经常出现超卖等等情况,最后根据采用是 ...

  4. GNS3与抓包工具Wireshark的关联

    转至:https://blog.51cto.com/xpleaf/1615145 (一)前言 本博文分享GNS3与Wireshark关联的方法. 显然现在网络上已经有类似的文章分享,而本博文旨在提供更 ...

  5. (转)oracle 数据库性能健康检查脚本

    转至:https://blog.csdn.net/cm_0205/article/details/100210526?utm_medium=distribute.pc_relevant_downloa ...

  6. 《Selenium+Pytest Web自动化实战》随到随学在线课程,零基础也能学!

    课程介绍 课程主题:<Selenium+Pytest Web自动化实战> 适合人群: 1.功能测试转型自动化测试 2.web自动化零基础的小白 3.对python 和 selenium 有 ...

  7. 『现学现忘』Docker相关概念 — 1、云计算概念

    目录 1.云计算的概念 2.示例说明云计算 3.小故事说明云计算 "云计算"这个词,相信大家都非常熟悉. 作为信息科技发展的主流趋势,它频繁地出现在我们的眼前.伴随它一起出现的,还 ...

  8. JZ-010-矩形覆盖

    矩形覆盖 题目描述 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目链接: 矩形覆盖 代码 /** * 标题:矩形覆盖 ...

  9. 矩池云上使用nohup和&让任务后台运行

    1.nohup 用途:不挂断地运行命令. 语法:nohup Command [ Arg - ] [ & ] 无论是否将 nohup 命令的输出重定向到终端,输出都将附加到当前目录的 nohup ...

  10. php在windows上安装kafka扩展

    一.下载kafka扩展包 链接:https://pecl.php.net/package/rdkafka 二.解压安装包 三.修改php.ini 复制librdkafka.dll 到php\php7. ...