一个1A主席树的男人,沦落到褪水DP举步维艰

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long //#define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin); #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; const int N = 507;
int f_max[N][N], f_min[N][N], a[N], sum[N]; int main(){
FileOpen();
int n;
io >> n;
R(i,1,n){
io >> a[i];
a[i + n] = a[i];
}
R(i,1, n << 1) sum[i] = sum[i - 1] + a[i]; R(len, 2, n){
R(l, 1, n << 1){
int r = l + len - 1;
if(r > (n << 1)) continue; f_min[l][r] = 0x3f3f3f3f; R(k, l, r - 1){
f_min[l][r] = Min(f_min[l][r], f_min[l][k] + f_min[k+1][r] + sum[r] - sum[l-1]);
f_max[l][r] = Max(f_max[l][r], f_max[l][k] + f_max[k+1][r] + sum[r] - sum[l-1]);
}
}
} int maxx = 0, minn = 0x7fffffff;
R(i,1,n){
maxx = Max(maxx, f_max[i][i + n - 1]);
minn = Min(minn, f_min[i][i + n - 1]);
} printf("%d\n%d", minn, maxx); return 0;
}

Luogu1880 [NOI1995]石子合并 (区间DP)的更多相关文章

  1. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  2. P1880 [NOI1995]石子合并 区间dp

    P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...

  3. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  4. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  5. P1880 [NOI1995]石子合并 区间dp+拆环成链

    思路 :一道经典的区间dp  唯一不同的时候 终点和起点相连  所以要拆环成链  只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...

  6. 石子合并 区间dp模板

    题意:中文题 Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合 ...

  7. 石子合并 区间DP模板题

    题目链接:https://vjudge.net/problem/51Nod-1021 题意 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石 ...

  8. P1880 [NOI1995]石子合并[环形DP]

    题目来源:洛谷 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将 ...

  9. 洛谷 P1080 石子合并 ( 区间DP )

    题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...

  10. 石子合并——区间dp

    石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分, ...

随机推荐

  1. 分享一个网上搜不到的「Redis」实现「聊天回合制」的方案

    前言 为什么说网上搜不到,因为关于聊天回合制的方案作者本人快把百度搜秃噜了也没找到,好在最终是公司一个关系不错的大佬帮提供了点思路,最终作者将其完整实现了出来. 分享出来大家可以收藏,万一你哪天也碰到 ...

  2. 13.LAMP架构介绍及配置

    LAMP架构介绍及配置 LAMP简介与概述 LAMP概述 LAMP架构是目前成熟的企业网站应用模式之一,指的是协同工作的一整套系统和相关软件,能够提供动态Web站点服务及其应用开发环境. LAMP是一 ...

  3. BUUCTF-被劫持的礼物

    被劫持的礼物 看提示用wireshark打开,找登陆流量包,过滤http .login目录的 账号密码加一起MD5小写即可. 1d240aafe21a86afc11f38a45b541a49

  4. 引入gitlab仓库代码到npm包的教程

    背景介绍 随着人类地发展,社会地进步,计算机技术地更新迭代,每一片码海里都有它宝贵的财富,每一座码山里都有着各自的秘密.怎么守住财富,隐藏一些秘密,成了一些开发人员所关心的事情. 需求分析 简单地说, ...

  5. cookie 案例 记住上一次的访问时间

    需求:记住上一次的访问时间 第一次访问Servlet 提示 欢迎首次访问 之后的访问 都提示 您上次的访问时间为:"""""""& ...

  6. 有关于weiphp2.00611上传sae的一些注意(图片上传解决方案)

    一.安装中注意的事项  安装时使用的系统为weiphp2.0611    版本     1.将所有文件上传到代码库中     2.按照步骤进行安装weiphp,注意在数据库导入的时候需要手动导入.  ...

  7. 如何查看/修改Redis密码

    一.修改密码: 打开redis.windows.conf文件,默认是没有红框框里这句话的,因为默认密码是"",就是没有,跟MySql一样. 加上这句话意思就是密码修改为 root ...

  8. 分布式事务(Seata) 四大模式详解

    前言 在上一节中我们讲解了,关于分布式事务和seata的基本介绍和使用,感兴趣的小伙伴可以回顾一下<别再说你不知道分布式事务了!> 最后小农也说了,下期会带给大家关于Seata中关于sea ...

  9. 『现学现忘』Git后悔药 — 29、版本回退git reset --mixed命令说明

    git reset --mixed commit-id命令:回退到指定版本.(mixed:混合的,即:中等回退.) 该命令不仅修改了分支中HEAD指针的位置,还将暂存区中数据也回退到了指定版本. 但是 ...

  10. 2019 CSP-J 初赛解析

    题面,成绩不是真实水平,就挑重点说一说 老师给的解析 T5 这是二分查找,属于是我的代码理解不太对 我的理解 #include<iostream> using namespace std; ...