套路题

题意

求有多少个 \(1\) 到 \(n\) 的排列满足恰有 \(k\) 对在排列中相邻的数满足前小于后

\(2 \leq n \leq 500, 0 \leq k \leq (n - 1)\)

思路

f[i][j][k] 表示已经放置了前 i 个数, 放置的第i个数是前i个数中第j大的($ 1\leq\(`j`\)\leq$i),已放置的前i个数形成的所有排列满足恰有 k 对在排列中相邻的数满足前小于后的排列数量。

放置第i+1个数时,第i+1个数是前i+1个数中第j大的,第i个数是严格小于前i个数中第j大的,会为排列增加一对相邻的数满足前小于后,第i个数是大于等于前i个数中第j大的,不会为排列增加一对相邻的数满足前小于后,转移方程为:

\[f_{(i + 1) j k} = \sum_{x = 1}^{j - 1}f_{i x (k-1)} + \sum_{x=j}^{i}f_{ixk}
\]

显然,后面的和式可以通过前缀和优化的。

时间复杂度为\(O(n^2k)\)。

G - Similar Permutation

传送门

题意

求\(1\)到\(n\)的排列\(A\) 和 \(B\)的相似度为\(k\)的数量。

相似度计算:\(k = \sum_{i = 2}^{n}[(A_i - A_{i-1})(B_i - B_{i-1}) > 0]\) (\([X] = 1, X 为真,[X] = 0, X为假\))。

\(2 \leq n \leq 100, 0 \leq k \leq (n - 1)\)。

思路

与前一道题相比,这一题只是增加了一维状态。

f[i][a][b][k] 表示排列\(A\),\(B\)已经放置了前 i 个数, 排列\(A\)放置的第i个数在排列\(A\)中是第a大的,排列\(B\)放置的第i个数在排列\(B\)中是第b大的,此时相似度为\(k\)的排列数量。

转移方程为:

\[f_{(i+1)abk} = \sum_{x = 1}^{a - 1}\sum_{y = 1}^{b - 1} f_{ixy(k-1)} +
\sum_{x = a}^{i}\sum_{y = b}^{i} f_{ixy(k-1)} +
\sum_{x = 1}^{a - 1}\sum_{y = b}^{i} f_{ixyk} +
\sum_{x = a}^{i}\sum_{y = 1}^{b - 1} f_{ixyk}
\]

和式同样可以使用前缀和来优化。

时间复杂度为\(O(n^4)\)。

代码

int pre[107][107][107], f[107][107][107];
void solve_problem() {
int n, m, P; std::cin >> n >> m >> P; auto add = [&](int a, int b) -> int {
a += b;
if ( a >= P ) a -= P;
return a;
};
auto sub = [&](int a, int b) -> int {
a -= b;
if ( a < 0 ) a += P;
return a;
};
auto sum = [&](int n, int x1, int y1, int x2, int y2) -> int {
if (n < 0) return 0;
return add(sub(sub(pre[n][x2][y2], pre[n][x2][y1 - 1]), pre[n][x1 - 1][y2]), pre[n][x1 - 1][y1 - 1]);
}; for (int i = 0; i <= n; i++)
for (int j = 0; j <= n; j++)
for (int h = 0; h <= n; h++)
pre[i][j][h] = f[i][j][h] = 0; f[0][1][1] = 1; for (int i = 1; i <= n; i++) {
for (int k = 0; k <= i + 1; k++) {
for (int a = 1; a <= i; a++) {
for (int b = 1; b <= i; b++) {
pre[k][a][b] = add(pre[k][a][b - 1], f[k][a][b]);
}
}
for (int b = 1; b <= i; b++) {
for (int a = 1; a <= i; a++) {
pre[k][a][b] = add(pre[k][a][b], pre[k][a - 1][b]);
}
}
}
for (int k = 0; k <= i + 1; k++) {
for (int a = 1; a <= i + 1; a++) {
for (int b = 1; b <= i + 1; b++) {
f[k][a][b] = add(
add(sum(k - 1, 1, 1, a - 1, b - 1), sum(k - 1, a, b, i, i)),
add(sum(k, 1, b, a - 1, i), sum(k, a, 1, i, b - 1))
);
}
}
}
}
std::cout << sum(m, 1, 1, n, n) << "\n";
}

AtCoder Beginner Contest 282 G - Similar Permutation的更多相关文章

  1. AtCoder Beginner Contest 260 G // imos(累积和算法)

    题目传送门:G - Scalene Triangle Area (atcoder.jp) 题意: 给定大小为N*N的OX矩阵,若矩阵的(s,t)处为O,其覆盖范围为:满足以下条件的所有位置(i,j) ...

  2. AtCoder Beginner Contest 136

    AtCoder Beginner Contest 136 题目链接 A - +-x 直接取\(max\)即可. Code #include <bits/stdc++.h> using na ...

  3. AtCoder Beginner Contest 137 F

    AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...

  4. AtCoder Beginner Contest 076

    A - Rating Goal Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Takaha ...

  5. AtCoder Beginner Contest 075 C bridge【图论求桥】

    AtCoder Beginner Contest 075 C bridge 桥就是指图中这样的边,删除它以后整个图不连通.本题就是求桥个数的裸题. dfn[u]指在dfs中搜索到u节点的次序值,low ...

  6. AtCoder Beginner Contest 154 题解

    人生第一场 AtCoder,纪念一下 话说年后的 AtCoder 比赛怎么这么少啊(大雾 AtCoder Beginner Contest 154 题解 A - Remaining Balls We ...

  7. AtCoder Beginner Contest 177 题解

    AtCoder Beginner Contest 177 题解 目录 AtCoder Beginner Contest 177 题解 A - Don't be late B - Substring C ...

  8. 题解 AtCoder Beginner Contest 168

    小兔的话 欢迎大家在评论区留言哦~ AtCoder Beginner Contest 168 A - ∴ (Therefore) B - ... (Triple Dots) C - : (Colon) ...

  9. AtCoder Beginner Contest 223

    AtCoder Beginner Contest 223 A是纯纯的水题,就不说了 B - String Shifting 思路分析 我真的sb,一开始想了好久是不是和全排列有关,然后读了好几遍题目也 ...

  10. KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解

    KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...

随机推荐

  1. Vue学习之--------内置指令的使用【v-bind、v-model、v-for、v-on、v-if 、v-else、v-show、v-text。。。】(2022/7/19)

    文章目录 1.常见的内置指令 2.代码实例 3.测试效果 1.常见的内置指令 v-bind: 单向绑定解析表达式, 可简写为 :xxx v-model: 双向数据绑定 v-for : 遍历数组/对象/ ...

  2. 如何使用IDEA自动生成类图

    然后再类里边按 Ctrl+Alt+U 然后就会生成类图,这个样子 然后怎样把生成的类图搞出来.当然是使用截图软件啦.微信上的截图软件和qq上的截图软件好像都不在阔以,你一点击截图按钮.生成的类图就会消 ...

  3. Python基础之面向对象:1、面向对象及编程思想

    一.人狗大战 1.需求 用代码模拟人.狗打架的小游戏 人和狗种类不同,因此双方的属性各不相同 推导一: 人和狗各有不同属性 使用字典方式储存属性较为方便,并可储存多种属性 # 1.在字典内储存'人'属 ...

  4. Python基础之函数:5、内置函数、迭代器对象、异常的捕获和处理

    目录 一.重要内置函数 1.zip() 2.filter() 3.sorted() 二.常见内置函数 1. abs() 2.all.any() 3.bin.oct.hex.int() 4.bytes( ...

  5. 一次SpringBoot版本升级,引发的血案

    前言 最近项目组升级了SpringBoot版本,由之前的2.0.4升级到最新版本2.7.5,却引出了一个大Bug. 到底是怎么回事呢? 1.案发现场 有一天,项目组的同事反馈给我说,我之前有个接口在新 ...

  6. 我的第一个项目(二):使用Vue做一个登录注册界面

    好家伙,   顶不住了,太多的bug, 本来是想把背景用canvas做成动态的,但是,出现了各种问题 为了不耽误进度,我们先把一个简单的登录注册界面做出来 来看看效果:  (看上去还不错) 本界面使用 ...

  7. JAVA-面向对象之对象拷贝

    Java 中的数据类型分为基本数据类型和引用数据类型.对于这两种数据类型,在进行赋值操作.用作方法参数或返回值时,会有值传递和引用(地址)传递的差别. Map对象 测试01-等号赋值: @Test p ...

  8. goioc:一个使用 Go 写的简易的 ioc 框架

    目录 goioc 介绍 快速上手 接口介绍 使用 goioc 如何使用 生命周期 实例化 获取对象 结构体字段依赖注入 Dispose 接口 反射形式使用 goioc 如何使用 接口.结构体.结构体指 ...

  9. Java中遇到的常见问题

      一.常用的快捷键 查询对应类:Ctrl+N eclipse的快速生成代码:Alt+Shift+s或sources 加单行注释:Ctrl+/ 运行程序:Ctrl+Shift+F10 搜索:Ctrl+ ...

  10. 【Shell脚本案例】案例1:服务器系统配置初始化

    〇.目录 一.背景 新购买10台服务器,并安装Linux系统 目的:对操作系统进行配置的初始化 二.需求 1.设置时区并同步时间 2.禁用selinux安全机制 3.关闭防火墙(清空防火墙的默认策略, ...