CF914G Sum the Fibonacci(FWT,FST)
CF914G Sum the Fibonacci(FWT,FST)
题解时间
一堆FWT和FST缝合而来的丑陋产物。
对 $ cnt[s_{a}] $ 和 $ cnt[s_{b}] $ 求FST,对 $ cnt[s_{d}] $ 和 $ cnt[s_{e}] $ 求异或卷积,然后对 $ cnt[ s_{ a }| s_{ b } ] \times f[ s_{ a }| s_{ b } ] $ , $ cnt[ s_{ c } ] \times f[ s_{ c } ] $ , $ cnt[ s_{ d } \oplus s_{ e } ] \times f[ s_{ d } \oplus s_{ e } ] $ 求与卷积,将每个 $ 2^{i} $ 项的答案加起来就完事。
#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
struct pat{int x,y;pat(int x=0,int y=0):x(x),y(y){}bool operator<(const pat &p)const{return x==p.x?y<p.y:x<p.x;}};
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
namespace RKK
{
const int N=18,S=1<<17;
const int mo=1000000007,inv2=500000004;
int bcnt(int x){return __builtin_popcount(x);}
int lbit(int x){return __builtin_ffs(x);}
int add(int a,const int &b){a+=b;if(a>=mo) a-=mo;else if(a<0) a+=mo;return a;}
void doadd(int &a,const int &b){a+=b;if(a>=mo) a-=mo;else if(a<0) a+=mo;}
void fwtand(int *a,int len,int tp)
{
for(int i=1;i<len;i<<=1)for(int j=0;j<len;j+=i<<1)for(int k=0;k<i;k++)
doadd(a[j+k],tp*a[j+k+i]);
}
void fwtor(int *a,int len,int tp)
{
for(int i=1;i<len;i<<=1)for(int j=0;j<len;j+=i<<1)for(int k=0;k<i;k++)
doadd(a[j+k+i],tp*a[j+k]);
}
void fwtxor(int *a,int len,int tp)
{
int x,y;
for(int i=1;i<len;i<<=1)for(int j=0;j<len;j+=i<<1)for(int k=0;k<i;k++)
{
x=a[j+k],y=a[j+k+i];
a[j+k]=add(x,y),a[j+k+i]=add(x,-y);
if(tp==-1) a[j+k]=(lint)a[j+k]*inv2%mo,a[j+k+i]=(lint)a[j+k+i]*inv2%mo;
}
}
int n,mxlen=1,mxlog,mxa,bc[S];
int f[N][S],g[S];
int a[S],b[S],c[S],fib[S];
int main()
{
fib[0]=0,fib[1]=1;for(int i=2;i<S;i++) fib[i]=add(fib[i-1],fib[i-2]);
for(int i=1;i<S;i++) bc[i]=bcnt(i);
read(n);for(int i=1,w;i<=n;i++)
read(w),mxa=max(mxa,w),f[bc[w]][w]++,a[w]++,doadd(b[w],fib[w]);
while(mxlen<=mxa) mxlen<<=1,mxlog++;
for(int i=0;i<=mxlog;i++) fwtor(f[i],mxlen,1);
for(int i=0;i<=mxlog;i++)
{
memset(g,0,mxlen*4);
for(int j=0;j<=i;j++)for(int s=0;s<mxlen;s++) doadd(g[s],1ll*f[j][s]*f[i-j][s]%mo);
fwtor(g,mxlen,-1);
for(int s=0;s<mxlen;s++)if(bc[s]==i) doadd(c[s],g[s]);
}
fwtxor(a,mxlen,1);for(int i=0;i<mxlen;i++) a[i]=1ll*a[i]*a[i]%mo;fwtxor(a,mxlen,-1);
for(int i=0;i<mxlen;i++) a[i]=1ll*a[i]*fib[i]%mo;
for(int i=0;i<mxlen;i++) c[i]=1ll*c[i]*fib[i]%mo;
fwtand(a,mxlen,1),fwtand(b,mxlen,1),fwtand(c,mxlen,1);for(int i=0;i<mxlen;i++) c[i]=1ll*a[i]*b[i]%mo*c[i]%mo;fwtand(c,mxlen,-1);
int ans=0;for(int i=1;i<mxlen;i<<=1) doadd(ans,c[i]);
printf("%d\n",ans);
return 0;
}
}
int main(){return RKK::main();}
CF914G Sum the Fibonacci(FWT,FST)的更多相关文章
- [WC2018]州区划分(FWT,FST)
[WC2018]州区划分(FWT,FST) Luogu loj 题解时间 经典FST. 在此之前似乎用到FST的题并不多? 首先预处理一个子集是不是欧拉回路很简单,判断是否连通且度数均为偶数即可. 考 ...
- 【WC2018】州区划分(FWT,动态规划)
[WC2018]州区划分(FWT,动态规划) 题面 UOJ 洛谷 题解 首先有一个暴力做法(就有\(50\)分了) 先\(O(2^nn^2)\)预处理出每个子集是否合法,然后设\(f[S]\)表示当前 ...
- 【BZOJ5019】[SNOI2017]遗失的答案(FWT,动态规划)
[BZOJ5019][SNOI2017]遗失的答案(FWT,动态规划) 题面 BZOJ 题解 发现\(10^8\)最多分解为不超过\(8\)个本质不同质数的乘积. 而\(gcd\)和\(lcm\)分别 ...
- 1305 Pairwise Sum and Divide(数学 ,规律)
HackerRank 1305 Pairwise Sum and Divide 有这样一段程序,fun会对整数数组A进行求值,其中Floor表示向下取整: fun(A) sum = ...
- CF914G Sum the Fibonacci (快速沃尔什变换FWT + 子集卷积)
题面 题解 这是一道FWT和子集卷积的应用题. 我们先设 cnt[x] 表示 Si = x 的 i 的数量,那么 这里的Nab[x]指满足条件的 Sa|Sb=x.Sa&Sb=0 的(a,b)二 ...
- Codeforces914G Sum the Fibonacci(FWT)
FWT大杂烩.跟着模拟做很多次FWT即可. #include<iostream> #include<cstdio> #include<cmath> #include ...
- Hat's Fibonacci(大数,好)
Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- 首师大附中科创教育平台 我的刷题记录 0304 50095106扔核弹(XDC,你懂的)
今天给大家献上"C"级题:50095106扔核弹(XDC,你懂的)!! 试题编号:0304 50095106扔核弹(XDC,你懂的) 难度级别:C: 运行时间限制:1000ms ...
- 算法大全(c,c++)
http://www.2cto.com/kf/201109/105758.html 算法大全(C,C++)一. 数论算法 1.求两数的最大公约数function gcd(a,b:integer):in ...
随机推荐
- 基于单XCVU9P+双DSP C6678的双FMC接口 100G光纤传输加速计算卡
一.板卡概述 板卡包括一片Xilinx FPGA XCVU9P,两片 TI 多核DSP TMS320C6678及其控制管理芯片CFPGA.设计芯片满足工业级要求. FPGA VU9P 需要外接4路Q ...
- Solution -「UNR #5」「UOJ #671」诡异操作
\(\mathcal{Desciprtion}\) Link. 给定序列 \(\{a_n\}\),支持 \(q\) 次操作: 给定 \(l,r,v\),\(\forall i\in[l,r], ...
- Solution -「LOCAL」解析电车
\(\mathcal{Description}\) 给定 \(n\) 个点 \(m\) 条边的无向图,每条边形如 \((u,v,r)\),表示 \(u,v\) 之间有一条阻值为 \(r\Omega ...
- ios plist获取权限
最近太忙了,没有时间写vue 这个权限获取有点坑,极不好记,所以备份一份 <key>NSVideoSubscriberAccountUsageDescription</key> ...
- k8s集群搭建EFK日志平台:ElasticSearch + Fluentd + Kibana
k8s集群 kubectl get node EFK简介 ElasticSearch:分布式存储检索引擎,用来搜索.存储日志 Fluentd:日志采集 Kibana:读取es中数据进行可视化web界面 ...
- Linux安装ms-office
https://ittutorials.net/open-source/linux/installing-microsoft-office-in-ubuntu/
- Java并发杂谈(一):volatile的底层原理,从字节码到CPU
volatile的特性 volatile是Java中用于修饰变量的关键字,其主要是保证了该变量的可见性以及顺序性,但是没有保证原子性:其是Java中最为轻量级的同步关键字: 接下来我将会一步步来分析v ...
- Keepalived非抢占模式配置
一.前言 HA的实际运行过程中,当主机发生异常,且后期恢复正常后,存在抢占或非抢占两种情况. 结合实际需求,可能有很多用户需要非抢占的HA工作模式.keepalived能够很好的支持这一需求. 二.k ...
- spyeye手机监控最新版分享下载不用碰对方手机,所有聊天内容,照片等都能看见
spyeye间谍眼介绍的非常详细,不但可以监控用户收发短信和通话记录,还可远程开启手机听筒,监听手机周围声音,实时监控用户的通话,并且利用GPS功能监测到手机用户所在位置,给用户安全隐私造成极大的威胁 ...
- 【C#基础概念】字节顺序(大端、小端)
字节顺序,又称端序或尾序(英語:Endianness),在计算机科学领域中,指電腦記憶體中或在数字通信链路中,组成多字节的字的字节的排列顺序. 例如假设上述变量x类型为int,位于地址0x100处,它 ...