[HNOI2016]序列(莫队,RMQ)
[HNOI2016]序列(莫队,RMQ)
一眼看不出来怎么用数据结构维护
然后还没修改
所以考虑莫队
以$(l,r-1) -> (l,r)$为例
对答案的贡献是$\Sigma_{i=l}^{r}minval(a[i:r])$
考虑维护前缀和
先用单调栈扫出$w[i]$作为最小值的左边界右边界$l_i,r_i$
然后回到上面的例子贡献就是$frontsum_{r}-frontsum_{rmqmin(l,r)}+w[rmqmin(l,r)]*(rmqmin(l,r)-l+1)$
完结...等等我好像忘了点啥
$frontsum_{i}$指的是从i向前拓展的i个包含i的子区间的区间最小值的和,也是可以用单调栈求出来的
时间复杂度略
#include<cstdio>
#include<cmath>
#include<algorithm>
using std::sort;
typedef long long lint;
const int N=100011;
template<typename tp>void read(tp &kk){
#define ak *
tp phy=0,ioi=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')ioi=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){phy=phy*10+ch-'0';ch=getchar();}
kk=phy ak ioi;
}
int n,m,bl[N];
lint w[N];
int bsize; int lg[N];
int lgl[N][17];
void is()
{
for(int i=2;i<=n;i++) lg[i]=lg[i>>1]+1;
for(int i=1;i<=n;i++) lgl[i][0]=i;
for(int k=1;k<=lg[n];k++)
{
for(int i=1;i-1+(1<<k)<=n;i++)
{
lgl[i][k]=w[lgl[i][k-1]]<w[lgl[i+(1<<(k-1))][k-1]]?lgl[i][k-1]:lgl[i+(1<<(k-1))][k-1];
}
}
}
int rmq(int l,int r){
return w[lgl[l][lg[r-l+1]]]<
w[lgl[r-(1<<lg[r-l+1])+1][lg[r-l+1]]]?
lgl[l][lg[r-l+1]]:
lgl[r-(1<<lg[r-l+1])+1][lg[r-l+1]];
} int li[N],ri[N];
int st[N],hop;
void rkk()
{
for(int i=1;i<=n;i++)
{
while(hop&&w[st[hop]]>w[i])
ri[st[hop]]=i-1,hop--;
st[++hop]=i;
if(i==n)
while(hop) ri[st[hop]]=i,hop--;
}
for(int i=n;i;i--)
{
while(hop&&w[st[hop]]>w[i])
li[st[hop]]=i+1,hop--;
st[++hop]=i;
if(i==1)
while(hop) li[st[hop]]=i,hop--;
}
}
lint fsum[N],bsum[N];
void baka()
{
for(int i=1;i<=n;i++)
fsum[i]=fsum[li[i]-1]+w[i]*(i-li[i]+1);
for(int i=n;i;i--)
bsum[i]=bsum[ri[i]+1]+w[i]*(ri[i]-i+1);
} struct ques
{
int l,r,id;
bool friend operator < (ques a,ques b)
{
if(bl[a.l]!=bl[b.l]) return bl[a.l]<bl[b.l];
return bl[a.r]<bl[b.r];
}
}q[N]; lint prt[N],tmp; int main()
{
read(n),read(m),bsize=ceil(sqrt(n));
for(int i=1;i<=n;i++) read(w[i]),bl[i]=(i-1)/bsize+1;
rkk();
is();
baka();
for(int i=1;i<=m;i++) read(q[i].l),read(q[i].r),q[i].id=i;
sort(q+1,q+1+m);
int l=1,r=1;tmp=w[1];
for(int i=1;i<=m;i++)
{
while(r<q[i].r){r++;tmp+=fsum[r]-fsum[rmq(l,r)]+((rmq(l,r)-l+1)*w[rmq(l,r)]);}
while(l>q[i].l){l--;tmp+=bsum[l]-bsum[rmq(l,r)]+((r-rmq(l,r)+1)*w[rmq(l,r)]);}
while(r>q[i].r){tmp-=fsum[r]-fsum[rmq(l,r)]+((rmq(l,r)-l+1)*w[rmq(l,r)]);r--;}
while(l<q[i].l){tmp-=bsum[l]-bsum[rmq(l,r)]+((r-rmq(l,r)+1)*w[rmq(l,r)]);l++;}
prt[q[i].id]=tmp;
}
for(int i=1;i<=m;i++) printf("%lld\n",prt[i]);
return 0;
}
[HNOI2016]序列(莫队,RMQ)的更多相关文章
- BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)
BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...
- BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]
4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...
- 【BZOJ4540】[Hnoi2016]序列 莫队算法+单调栈
[BZOJ4540][Hnoi2016]序列 Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,a ...
- [BZOJ4540][HNOI2016]序列 莫队
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...
- [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)
Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...
- 洛谷P3246 [HNOI2016]序列 [莫队]
传送门 思路 看到可离线.无修改.区间询问,相信一定可以想到莫队. 然而,莫队怎么转移是个大问题. 考虑\([l,r]\rightarrow[l,r+1]\)时答案会怎样变化?(左端点变化时同理) \ ...
- bzoj 4540: [Hnoi2016]序列 莫队
题目: 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- 1,ar.若1≤l≤s≤t≤r≤n,则称a[s:t]是a ...
- BZOJ 4540 [Hnoi2016]序列 | 莫队 详细题解
传送门 BZOJ 4540 题解 --怎么说呢--本来想写线段树+矩阵乘法的-- --但是嘛--yali的机房太热了--困--写不出来-- 于是弃疗,写起了莫队.(但是我连莫队都想不出来!) 首先用单 ...
- 【BZOJ4540】【HNOI2016】序列 [莫队][RMQ]
序列 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 给定长度为n的序列:a1,a2,…,a ...
随机推荐
- EasyX库简单中文手册
EasyX库简单中文手册 作者: 时间: 2021/2/2 第一个例程 #include <graphics.h> // 图像相关库 #include <conio.h> // ...
- centos7.+系统,mysql主从部署
两台服务器或者两个虚拟机 主库:master IP:192.168.85.152 从库:slave IP:192.168.85.153 关闭主库防火墙或者放行mysql的3306端口, ...
- [Java]Java入门笔记(三):类、对象和方法
七.类.对象和方法 类和对象的关系 类定义了对象的本质: 类(class)是对象(object)的模板,而对象(object)是类的一个实例(instance). 使多个对象的指向相同: Studen ...
- java-23种设计模式概述【软件设计模式基本介绍(是什么、作用、优点)、模式的分类和介绍】
一.设计模式基本介绍(是什么.作用.优点) 1.软件设计模式是什么? 软件设计模式(Software Design Pattern),又称设计模式. 2.设计模式的作用 ★ 提高代码的可复用性.可维护 ...
- 彻底明白Linux硬链接和软链接
[硬连接] 在Linux的文件系统中,保存在磁盘分区中的实际文件不管是什么类型系统都给它分配一个编号,称为索引节点号(Inode Index),这个索引节点用来标识这个文件,即这个索引节点就代表了这个 ...
- RainbowCrack彩虹表破解密码hash
实验目的 使用彩虹表破解散列值b0baee9d279d34fa1dfd71aadb908c3f 实验原理 1)彩虹表破解是利用彩虹表破解散列数据的工具. 这种方法不同于暴力破解攻击.暴力破解攻击会将密 ...
- LEETCODE 之写在前面
不知道能坚持多久,甚至不知道能不能坚持下去. 不知道是先看刷题的笔记好 ,还是直接刷题遇到再说好. 不知道是随机刷的好,还是从头向后这样刷好. 反正,勇敢昌兄,不怕困难.
- 8款国内外主流商业智能BI工具分析,助你轻松选型!
BI(Business Intelligence),即商业智能或商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策 ...
- NFA转化为DFA
NFA(不确定的有穷自动机)转化为DFA(确定的有穷自动机) NFA转换DFA,通常是将带空串的NFA(即:ε-NFA)先转化为不带空串的NFA(即:NFA),然后再转化为DFA. 提示:ε是空串的意 ...
- 探究Spring原理
探究Spring原理 探究IoC原理 首先我们大致了解一下ApplicationContext的加载流程: 我们可以看到,整个过程极为复杂,一句话肯定是无法解释的,所以我们就从ApplicationC ...