[python] 基于matplotlib实现雷达图的绘制
雷达图(也称为蜘蛛图或星形图)是一种可视化视图,用于使用一致的比例尺显示三个或更多维度上的多元数据。并非每个人都是雷达图的忠实拥护者,但我认为雷达图能够以视觉上吸引人的方式比较不同类别各个特征的值。本文主要讲述通过matplotlib绘制雷达图。本文所有代码见:Python-Study-Notes
# 去掉警告
import warnings
warnings.filterwarnings("ignore")
# 多行输出
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
文章目录
1 基础雷达图 Basic radar chart
雷达图显示一个或几个实体的几个数值变量的值。下面是一个简单的示例,仅显示一个类别5个变量的值。据我所知,Matplotlib中没有允许生成雷达图的内建函数。因此,我们必须使用基本函数来构建它,这使得这有些小麻烦。以下实例输入数据是一个pandas数据框架,其中每一行表示一个类别,每一列表示一个变量。
# Libraries
import matplotlib.pyplot as plt
import pandas as pd
from math import pi
# Set data
# 设定数据
df = pd.DataFrame({
'group': ['A', 'B', 'C', 'D'],
'var1': [38, 1.5, 30, 4],
'var2': [29, 10, 9, 34],
'var3': [8, 39, 23, 24],
'var4': [7, 31, 33, 14],
'var5': [28, 15, 32, 14]
})
# number of variable
# 变量类别
categories = list(df)[1:]
# 变量类别个数
N = len(categories)
# plot the first line of the data frame.
# 绘制数据的第一行
values = df.loc[0].drop('group').values.flatten().tolist()
# 将第一个值放到最后,以封闭图形
values += values[:1]
print(values)
# 设置每个点的角度值
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]
# Initialise the spider plot
# 初始化极坐标网格
ax = plt.subplot(111, polar=True)
# Draw one axe per variable + add labels labels yet
# 设置x轴的标签
plt.xticks(angles[:-1], categories, color='grey', size=8)
# Draw ylabels
# 设置标签显示位置
# 具体见https://www.bbsmax.com/A/x9J2DRwNd6/
ax.set_rlabel_position(0)
# 设置y轴的标签
plt.yticks([10, 20, 30], ["10", "20", "30"], color="grey", size=7)
plt.ylim(0, 40)
# Plot data
# 画图
ax.plot(angles, values, linewidth=1, linestyle='solid')
# Fill area
# 填充区域
ax.fill(angles, values, 'b', alpha=0.1);
plt.show();
[38.0, 29, 8, 7, 28, 38.0]
2 多类别变量雷达图 Radar chart with several individuals
这个例子跟上图一样,一旦你理解了这个方法,就很容易把它应用到多类别变量。注意,如果超过2到3个类别,我强烈建议使用分面绘图,而不是在同一个图上显示所有类别,这样会导致雷达图变得难以阅读。
首先创建一个坐标轴背景。
# Libraries
import matplotlib.pyplot as plt
import pandas as pd
from math import pi
# Set data
df = pd.DataFrame({
'group': ['A', 'B', 'C', 'D'],
'var1': [38, 1.5, 30, 4],
'var2': [29, 10, 9, 34],
'var3': [8, 39, 23, 24],
'var4': [7, 31, 33, 14],
'var5': [28, 15, 32, 14]
})
# ---------- 步骤1 创建背景
# number of variable
# 变量类别
categories = list(df)[1:]
# 变量类别个数
N = len(categories)
# 设置每个点的角度值
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]
# Initialise the spider plot
# 初始化极坐标网格
ax = plt.subplot(111, polar=True)
# If you want the first axis to be on top:
# 设置角度偏移
ax.set_theta_offset(pi / 2)
# 设置顺时针还是逆时针,1或者-1
ax.set_theta_direction(-1)
# Draw one axe per variable + add labels labels yet
# 设置x轴的标签
plt.xticks(angles[:-1], categories)
# Draw ylabels
# 画标签
ax.set_rlabel_position(0)
plt.yticks([10, 20, 30], ["10", "20", "30"], color="grey", size=7)
plt.ylim(0, 40);
进而填充绘图
# ---------- 步骤1 创建背景
# number of variable
# 变量类别
categories = list(df)[1:]
# 变量类别个数
N = len(categories)
# 设置每个点的角度值
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]
# Initialise the spider plot
# 初始化极坐标网格
ax = plt.subplot(111, polar=True)
# If you want the first axis to be on top:
# 设置角度偏移
ax.set_theta_offset(pi / 2)
# 设置顺时针还是逆时针,1或者-1
ax.set_theta_direction(-1)
# Draw one axe per variable + add labels labels yet
# 设置x轴的标签
plt.xticks(angles[:-1], categories)
# Draw ylabels
# 画标签
ax.set_rlabel_position(0)
plt.yticks([10, 20, 30], ["10", "20", "30"], color="grey", size=7)
plt.ylim(0, 40)
# ---------- 步骤1 绘制数据
# 单独绘制每一组数据
# Ind1
values = df.loc[0].drop('group').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="group A")
ax.fill(angles, values, 'b', alpha=0.1)
# Ind2
values = df.loc[1].drop('group').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="group B")
ax.fill(angles, values, 'r', alpha=0.1)
# Add legend
# 添加图例
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1));
3 雷达图分面绘图 Use faceting for Radar chart
以上例子显示了如何制作一个或几个类别的雷达图。但是,建议不要在同雷达图上绘制多个类别,会导致雷达图难以阅读。当多类别绘图推荐分面绘图,即单独绘制每一个类别的雷达图,这样能够让每一个类别的雷达图保持清晰,并可以可以比较每个图的形状。
import matplotlib.pyplot as plt
import pandas as pd
from math import pi
# Set data
df = pd.DataFrame({
'group': ['A','B','C','D'],
'var1': [38, 1.5, 30, 4],
'var2': [29, 10, 9, 34],
'var3': [8, 39, 23, 24],
'var4': [7, 31, 33, 14],
'var5': [28, 15, 32, 14]
})
# ---------- 步骤1 创建背景
def make_spider( row, title, color):
# number of variable
# 变量类别
categories = list(df)[1:]
# 变量类别个数
N = len(categories)
# 设置每个点的角度值
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]
# Initialise the spider plot
# 分图
ax = plt.subplot(2,2,row+1, polar=True, )
# If you want the first axis to be on top:
# 设置角度偏移
ax.set_theta_offset(pi / 2)
# 设置顺时针还是逆时针,1或者-1
ax.set_theta_direction(-1)
# Draw one axe per variable + add labels labels yet
# 设置x轴的标签
plt.xticks(angles[:-1], categories, color='grey', size=8)
# Draw ylabels
# 画标签
ax.set_rlabel_position(0)
plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)
plt.ylim(0,40)
# Ind
# 填充数据
values=df.loc[row].drop('group').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, color=color, linewidth=2, linestyle='solid')
ax.fill(angles, values, color=color, alpha=0.4)
# Add a title
# 设置标题
plt.title(title, size=11, color=color, y=1.1)
# ---------- 步骤2 绘制图形
my_dpi=96
plt.figure(figsize=(1000/my_dpi, 1000/my_dpi), dpi=my_dpi)
# Create a color palette:
# 设定颜色
my_palette = plt.cm.get_cmap("Set2", len(df.index))
# Loop to plot
for row in range(0, len(df.index)):
make_spider( row=row, title='group '+df['group'][row], color=my_palette(row))
<Figure size 1000x1000 with 0 Axes>
4 参考
[python] 基于matplotlib实现雷达图的绘制的更多相关文章
- [python] 基于matplotlib实现圆环图的绘制
圆环图本质上是一个中间切出一块区域的饼状图.可以使用python和matplotlib库来实现.本文主要介绍基于matplotlib实现圆环图.本文所有代码见:Python-Study-Notes # ...
- [python] 基于matplotlib_venn实现维恩图的绘制
文章目录 VENN DIAGRAM(维恩图) 1. 具有2个分组的基本的维恩图 Venn diagram with 2 groups 2. 具有3个组的基本维恩图 Venn diagram with ...
- Matplotlib学习---用matplotlib画雷达图(radar chart)
雷达图常用于对多项指标的全面分析.例如:HR想要比较两个应聘者的综合素质,用雷达图分别画出来,就可以进行直观的比较. 用Matplotlib画雷达图需要使用极坐标体系,可点击此链接,查看对极坐标体系的 ...
- python+matplotlib制作雷达图3例分析和pandas读取csv操作
1.例一 图1 代码1 #第1步:导出模块 import numpy as np import matplotlib.pyplot as plt from matplotlib import font ...
- pyhton中matplotlib箱线图的绘制(matplotlib双轴图、箱线图、散点图以及相关系数矩阵图))
//2019.07.23 1.箱形图,又称为盒式图,一般可以很好地反映出数据分布的特征,也可以进行多项数据之间分布特征的比较,它主要包含五个基础数据:中位数,两个上下分位数以及上下边缘线数据 其中的一 ...
- python中matplotlib画折线图实例(坐标轴数字、字符串混搭及标题中文显示)
最近在用python中的matplotlib画折线图,遇到了坐标轴 "数字+刻度" 混合显示.标题中文显示.批量处理等诸多问题.通过学习解决了,来记录下.如有错误或不足之处,望请指 ...
- [python] 基于matplotlib实现树形图的绘制
树形图Tree diagram (代码下载) 本文旨在描述如何使用Python实现基本的树形图.要实现这样的树形图,首先需要有一个数值矩阵.每一行代表一个实体(这里是一辆汽车).每列都是描述汽车的变量 ...
- python基于matplotlib绘图
import math import numpy as np import matplotlib.pyplot as plt from matplotlib.font_manager import F ...
- python3绘图示例5(基于matplotlib:正弦图等)
#!/usr/bin/env python# -*- coding:utf-8 -*- import numpy as npimport pylab as pyimport matplotlib as ...
随机推荐
- HQL中出现XXX is not mapped的错误
我的代码如下 @Test public void testCollection(){ String hql = "from Order where orderItems is not emp ...
- aws上传文件、删除文件、图像识别
目录 aws的上传.删除s3文件以及图像识别文字功能 准备工作 安装aws cli 初始化配置AWS CLI s3存储桶开通 图像识别文字功能开通 aws的sdk 上传文件 方法一 方法二 删除文件 ...
- Visual Studio(VS)修改C语言scanf等报错
1.在程序最前面加:#define_CRT_SECURE_NO_DEPRECATE 2.按照vs规定进行修改,例如把scanf改为scanf_s: 3.在"项目" -> &q ...
- Codeforces Round #816 (Div. 2)/CodeForces1715
CodeForces1715 Crossmarket 解析: 题目大意 有一个 \(n \times m\) 的空间,Stanley 需要从左上角到右下角:Megan 则需要从左下角到右上角.两人可以 ...
- 基于 Redis 生成分布式订单号
环境依赖: //spingBoot <version>2.6.6</version> //jdk11 <dependency> <groupId>org ...
- 二十六、StatefulSet资源控制器
StatefulSet资源控制器 一.statefulset介绍 StatefulSet 是为了解决有状态服务的问题而设计的资源控制器. 匹配 Pod name ( 网络标识 ) 的模式为:(stat ...
- Seata 1.5.2 源码学习
文章有点长,我决定用半个小时来给您分享~ 基于Seata 1.5.2,项目中用 seata-spring-boot-starter 1. SeataDataSourceAutoConfiguratio ...
- Vue3实现动态导入Excel表格数据
1. 前言 在开发工作过程中,我们会遇到各种各样的表格数据导入,大部分我们的解决方案:提供一个模板前端进行下载,然后按照这个模板要求进行数据填充,最后上传导入,这是其中一种解决方案.个人认为还有另外 ...
- Vue3 —— 组件练习题(附源码)
一.定义一个vue分页组件,实现客户端分页功能 1.1.子组件A(页数按钮) <!-- 本组件用于遍历分页的页数按钮 --> <template lang=""& ...
- i春秋123
打开是个普普通通的登录窗口,下尝试根据提示12341234进行输入,发现不正确...可能1234是指步骤,然后查看源码 发现了绿色的提示信息,我们就根据提示试试打开user.php 打开是白板网页,源 ...