NC24083 [USACO 2017 Dec P]Greedy Gift Takers
NC24083 [USACO 2017 Dec P]Greedy Gift Takers
题目
题目描述
Farmer John's nemesis, Farmer Nhoj, has N cows (\(1≤N≤10^5\)), conveniently numbered 1…N. They have unexpectedly turned up at Farmer John's farm, so the unfailingly polite Farmer John is attempting to give them gifts.
To this end, Farmer John has brought out his infinite supply of gifts, and Nhoj's cows have queued up in front of him, with cow 1 at the head of the queue and cow N at the tail. Farmer John was expecting that at every timestep, the cow at the head of the queue would take a gift from Farmer John and go to the tail of the queue. However, he has just realized that Nhoj's cows are not that polite! After receiving her gift, each cow may not go to the tail of the queue, but rather may cut some number of cows at the tail, and insert herself in front of them. Specifically, cow ii will always cut exactly cic_ici cows (\(0≤c_i≤N−1\)).
Farmer John knows that some cows might receive multiple gifts; as he has an infinite supply, this does not worry him. But he is worried that some cows might become unhappy if they do not get any gifts.
Help Farmer John find the number of cows who never receive any gifts, no matter how many gifts are handed out.
输入描述
The first line contains a single integer, N.
The second line contains N space-separated integers \(c_1,c_2,…,c_N\) .
输出描述
Please output the number of cows who cannot receive any gifts.
示例1
输入
3
1 2 0
输出
1
题解
思路
知识点:二分。
第一个难点是要注意到,可行性函数是关于队伍的第几头牛的,因为发现如果某头牛拿不到礼物那他之后的牛一定拿不到,而拿的到的牛之前的牛一定拿得到,因此答案位置处于函数零点,且函数单调。
第二个难点是如何写可行性检验的函数。我们先统计 \(mid\) 牛之前的牛的 \(cnt[i]\) ,表示牛插到第 \(i(1\leq i < mid)\) 个位置的数量,而且 \(cnt[i]\) 只会随 \(mid\) 靠前减少,而不会更改或者变多,因为牛要么排到后面要么还在 \(1\leq i <mid\) 。对于第 \(i\) 个位置,若 \(\sum_{i=1}^i cnt[i] \geq i\) ,说明 \(mid\) 牛之前肯定会存在 \(\geq i\) 的牛插队到 \(\leq i\) 的位置,由于,所以队伍始终至少在 \(i\) 之前循环,所以不可能到达 \(mid\) 牛;而 \(\sum_{i=1}^i cnt[i] < i\) 说明,在 \(mid\) 牛之前会存在 \(< i\) 的牛插队到 \(\leq i\) 的位置,即 \(\leq i\) 的队伍一定长度缩短,而且这些牛之后会到同样位置,因此 \(cnt[i]\) 不增,即 \(\leq i\) 排队的牛会不增,表示 \(\leq i\) 的队伍必定不会循环,特别地如果 \(\sum_{i=1}^{mid-1} cnt[i] < mid-1\) ,即表示 \(\leq mid-1\) 的队伍必定不会循环,即可行。
时间复杂度 \(O(n \log n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
int n;
int c[100007], cnt[100007];
bool check(int mid) {///判断是否拿得到
memset(cnt, 0, sizeof(cnt));
int sum = 0;
for (int i = 1;i < mid;i++) cnt[c[i]]++;
for (int i = 1;i < mid;i++) {
sum += cnt[i];
if (sum >= i) return 0;
}
return 1;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n;
for (int i = 1;i <= n;i++) cin >> c[i], c[i] = n - c[i];
int l = 1, r = n;
while (l <= r) {
int mid = l + r >> 1;
if (check(mid)) l = mid + 1;
else r = mid - 1;
}
cout << n - r << '\n';///n减最后一个拿得到的位置(第一个拿不到的位置减一) = 拿不到的总数
return 0;
}
NC24083 [USACO 2017 Dec P]Greedy Gift Takers的更多相关文章
- [USACO 2017 Dec Gold] Tutorial
Link: USACO 2017 Dec Gold 传送门 A: 为了保证复杂度明显是从终结点往回退 结果一开始全在想优化建边$dfs$……其实可以不用建边直接$multiset$找可行边跑$bfs$ ...
- USACO Section 1.1-2 Greedy Gift Givers
Greedy Gift Givers 贪婪的送礼者 对于一群(NP个)要互送礼物的朋友,GY要确定每个人送出的钱比收到的多多少. 在这一个问题中,每个人都准备了一些钱来送礼物,而这些钱将会被平均分给那 ...
- usaco training <1.2 Greedy Gift Givers>
题面 Task 'gift1': Greedy Gift Givers A group of NP (2 ≤ NP ≤ 10) uniquely named friends has decided t ...
- [BZOJ5139][Usaco2017 Dec]Greedy Gift Takers 权值线段树
Description Farmer John's nemesis, Farmer Nhoj, has NN cows (1≤N≤10^5), conveniently numbered 1…N. T ...
- [USACO 2017DEC] Greedy Gift Takers
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=5139 [算法] 二分答案 时间复杂度 : O(NlogN^2) [代码] #incl ...
- [USACO] 2017 DEC Bronze&Silver
link:http://www.usaco.org/index.php?page=dec17results Problem A(Bronze) 这是一道非常简单的判断重叠面积的题目,但第一次提交仍会出 ...
- [USACO17DEC]Greedy Gift Takers
题目描述 Farmer John's nemesis, Farmer Nhoj, has NN cows (1 \leq N \leq 10^51≤N≤105 ), conveniently numb ...
- USACO Section 1.1 Greedy Gift Givers 解题报告
题目 问题描述 有若干个朋友,朋友之间可以选择互相赠送一些有价值的礼物.一个人可以选择将一部分钱分给若干个朋友,例如某人送给其他两个人钱,总共赠送3元,两个人平均分,原本应该是每人1.5元,但是只能取 ...
- P4090 [USACO17DEC]Greedy Gift Takers
题目链接 题意分析 首先 如果当前序列中一头奶牛拿不到礼物的话 那么他后面的奶牛也拿不到礼物 所以我们可以二分 由于可以操作无限次 所以我们对于当前\([1,mid)\)的奶牛按照\(c\)值排序之后 ...
随机推荐
- Java中日期格式化的实现算法
package com.study.test; import java.io.Serializable; import java.text.SimpleDateFormat; import java. ...
- XCTF练习题---MISC---功夫再高也怕菜刀
XCTF练习题---MISC---功夫再高也怕菜刀 flag:flag{3OpWdJ-JP6FzK-koCMAK-VkfWBq-75Un2z} 解题步骤: 1.观察题目,下载附件 2.下载到电脑后发现 ...
- netty系列之:netty中的frame解码器
目录 简介 LineBasedFrameDecoder DelimiterBasedFrameDecoder FixedLengthFrameDecoder LengthFieldBasedFrame ...
- FreeRTOS --(2)内存管理 heap1
转载自https://blog.csdn.net/zhoutaopower/article/details/106631237 FreeRTOS 提供了5种内存堆管理方案,分别对应heap1/heap ...
- Golang 高阶函数
定义 高阶函数是接收函数作为参数或返回函数作为输出的函数. 高阶函数是对其他函数进行操作的函数,要么将它们作为参数,要么返回它们. 举例 函数作为参数 package main import &quo ...
- ucore lab5 用户进程管理 学习笔记
近几日睡眠质量不佳,脑袋一困就没法干活,今天总算时补完了.LAB5难度比LAB4要高,想要理解所有细节时比较困难.但毕竟咱不是要真去写一个OS,所以一些个实现细节就当成黑箱略过了. 这节加上了用户进程 ...
- 图解KMP字符串匹配算法+代码实现
kmp算法跟之前讲的bm算法思想有一定的相似性.之前提到过,bm算法中有个好后缀的概念,而在kmp中有个好前缀的概念,什么是好前缀,我们先来看下面这个例子. 观察上面这个例子,已经匹配的abcde称为 ...
- JDK自带线程池学习
JDK自带线程池 线程池的状态 线程有如下状态 RUNNING状态:Accept new tasks and process queued tasks SHUTDOWN状态:Don't accept ...
- 论文解读《Bilinear Graph Neural Network with Neighbor Interactions》
论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiang ...
- SRIO RapidIO (SRIO)协议介绍(-)
1 导读 1.1 与PCIe的差异 典型的PCIe结构定义了一个以单个中央处理器为核心的计算机系统,比如我们常见的工控机.PXIe机箱控制器.服务器内的IO设备.从系统架构来看,这个结构 ...