001-hive是什么
一、基本概念
官网含义:https://cwiki.apache.org/confluence/display/Hive/Home
The Apache Hive™ data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax.
Built on top of Apache Hadoop™, Hive provides the following features:
- Tools to enable easy access to data via SQL, thus enabling data warehousing tasks such as extract/transform/load (ETL), reporting, and data analysis.
- A mechanism to impose structure on a variety of data formats
Access to files stored either directly in Apache HDFS™ or in other data storage systems such as Apache HBase™
- Query execution via Apache Tez™, Apache Spark™, or MapReduce
- Procedural language with HPL-SQL
- Sub-second query retrieval via Hive LLAP, Apache YARN and Apache Slider.
上面的意思很明白了.这里再给他提炼一下:
1.hive是一个数据仓库
2.hive基于hadoop。
总结为一句话:hive是基于hadoop的数据仓库。
Hive定义了一种类似SQL的查询语言,被称为HQL,对于熟悉SQL的用户可以直接利用Hive来查询数据。同时,这个语言也允许熟悉 MapReduce 开发者们开发自定义的mappers和reducers来处理内建的mappers和reducers无法完成的复杂的分析工作。Hive可以允许用户编写自己定义的函数UDF,来在查询中使用。Hive中有3种UDF:User Defined Functions(UDF)、User Defined Aggregation Functions(UDAF)、User Defined Table Generating Functions(UDTF)。
Hive和传统的关系型数据库有很大的区别,Hive将外部的任务解析成一个MapReduce可执行计划,而启动MapReduce是一个高延迟的一件事,每次提交任务和执行任务都需要消耗很多时间,这也就决定Hive只能处理一些高延迟的应用(如果你想处理低延迟的应用,你可以去考虑一下Hbase)。同时,由于设计的目标不一样,Hive目前还不支持事务;不能对表数据进行修改(不能更新、删除、插入;只能通过文件追加数据、重新导入数据);不能对列建立索引(但是Hive支持索引的建立,但是不能提高Hive的查询速度。如果你想提高Hive的查询速度,请学习Hive的分区、桶的应用)。
二、hive与hbase的联系与区别
简单理解为,hive是文件的视图,hbase是建了索引的key-value表
共同点:
1.hbase与hive都是架构在hadoop之上的。都是用hadoop作为底层存储
区别:
2.Hive是建立在Hadoop之上为了减少MapReduce jobs编写工作的批处理系统,HBase是为了支持弥补Hadoop对实时操作的缺陷的项目 。
3.想象你在操作RMDB数据库,如果是全表扫描,就用Hive+Hadoop,如果是索引访问,就用HBase+Hadoop 。
4.Hive query就是MapReduce jobs可以从5分钟到数小时不止,HBase是非常高效的,肯定比Hive高效的多。
5.Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce,Hive中的表纯逻辑。
6.hive借用hadoop的MapReduce来完成一些hive中的命令的执行
7.hbase是物理表,不是逻辑表,提供一个超大的内存hash表,搜索引擎通过它来存储索引,方便查询操作。
8.hbase是列存储。
9.hdfs作为底层存储,hdfs是存放文件的系统,而Hbase负责组织文件。
10.hive需要用到hdfs存储文件,需要用到MapReduce计算框架。
2. 两者的特点
Hive帮助熟悉SQL的人运行MapReduce任务。因为它是JDBC兼容的,同时,它也能够和现存的SQL工具整合在一起。运行Hive查询会花费很长时间,因为它会默认遍历表中所有的数据。虽然有这样的缺点,一次遍历的数据量可以通过Hive的分区机制来控制。分区允许在数据集上运行过滤查询,这些数据集存储在不同的文件夹内,查询的时候只遍历指定文件夹(分区)中的数据。这种机制可以用来,例如,只处理在某一个时间范围内的文件,只要这些文件名中包括了时间格式。
HBase通过存储key/value来工作。它支持四种主要的操作:增加或者更新行,查看一个范围内的cell,获取指定的行,删除指定的行、列或者是列的版本。版本信息用来获取历史数据(每一行的历史数据可以被删除,然后通过Hbase compactions就可以释放出空间)。虽然HBase包括表格,但是schema仅仅被表格和列簇所要求,列不需要schema。Hbase的表格包括增加/计数功能。
3. 限制
Hive目前不支持更新操作。另外,由于hive在hadoop上运行批量操作,它需要花费很长的时间,通常是几分钟到几个小时才可以获取到查询的结果。Hive必须提供预先定义好的schema将文件和目录映射到列,并且Hive与ACID不兼容。
HBase查询是通过特定的语言来编写的,这种语言需要重新学习。类SQL的功能可以通过Apache Phonenix实现,但这是以必须提供schema为代价的。另外,Hbase也并不是兼容所有的ACID特性,虽然它支持某些特性。最后但不是最重要的--为了运行Hbase,Zookeeper是必须的,zookeeper是一个用来进行分布式协调的服务,这些服务包括配置服务,维护元信息和命名空间服务。
4. 应用场景
Hive适合用来对一段时间内的数据进行分析查询,例如,用来计算趋势或者网站的日志。Hive不应该用来进行实时的查询。因为它需要很长时间才可以返回结果。
Hbase非常适合用来进行大数据的实时查询。Facebook用Hbase进行消息和实时的分析。它也可以用来统计Facebook的连接数。
5. 总结
Hive和Hbase是两种基于Hadoop的不同技术--Hive是一种类SQL的引擎,并且运行MapReduce任务,Hbase是一种在Hadoop之上的NoSQL 的Key/vale数据库。当然,这两种工具是可以同时使用的。就像用Google来搜索,用FaceBook进行社交一样,Hive可以用来进行统计查询,HBase可以用来进行实时查询,数据也可以从Hive写到Hbase,设置再从Hbase写回Hive。
Hbase和Hive在大数据架构中处在不同位置,
Hbase主要解决实时数据查询问题,
Hive主要解决数据处理和计算问题,一般是配合使用。
一、区别:
- Hbase: Hadoop database 的简称,也就是基于Hadoop数据库,是一种NoSQL数据库,主要适用于海量明细数据(十亿、百亿)的随机实时查询,如日志明细、交易清单、轨迹行为等。
- Hive:Hive是Hadoop数据仓库,严格来说,不是数据库,主要是让开发人员能够通过SQL来计算和处理HDFS上的结构化数据,适用于离线的批量数据计算。
- 通过元数据来描述Hdfs上的结构化文本数据,通俗点来说,就是定义一张表来描述HDFS上的结构化文本,包括各列数据名称,数据类型是什么等,方便我们处理数据,当前很多SQL ON Hadoop的计算引擎均用的是hive的元数据,如Spark SQL、Impala等;
- 基于第一点,通过SQL来处理和计算HDFS的数据,Hive会将SQL翻译为Mapreduce来处理数据;
二、关系
在大数据架构中,Hive和HBase是协作关系,数据流一般如下图:
- 通过ETL工具将数据源抽取到HDFS存储;
- 通过Hive清洗、处理和计算原始数据;
- HIve清洗处理后的结果,如果是面向海量数据随机查询场景的可存入Hbase
- 数据应用从HBase查询数据;
001-hive是什么的更多相关文章
- [转]Hive/Beeline 使用笔记
FROM : http://www.7mdm.com/1407.html Hive: 利用squirrel-sql 连接hive add driver -> name&example u ...
- hive[3] 数据类型和文件格式
Hive 支持关系型数据库中的大多数据基本数据类型,同时也支持3种集合类型: 3.1 Hive 的基本数据类型 支持多种不同他度的整形和浮点型数据类型,具体如下(全都是保留字): tinyint ...
- Hive表中的NULL值处理
1 MySQL 到 Hive 表的sqoop任务把 原本的NULL 变成字符串 ‘null’ 了 alter table ${table_name} SET SERDEPROPERTIES('seri ...
- sqoop使用经验总结及问题汇总
问题导读1.导入数据到HDFS,需要注意什么?2.在测试sqoop语句的时候,如何限制记录数量?3.sqoop导入时什么情况下会多导入一条数据? 一.sqoop 导入数据到HDFS注意事项 分割符的方 ...
- sqoop部署与使用
sqoop安装 1.下载并解压 scp sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz mini1:/root/apps/ tar -zxvf sqoop-1.4 ...
- hive中分隔符‘\001’到底是什么鬼
答:hive中的默认的是'\001'是一种特由的分隔符 使用的是ascii编码的值,键盘是打不出来的.
- hive
Hive Documentation https://cwiki.apache.org/confluence/display/Hive/Home 2016-12-22 14:52:41 ANTLR ...
- hive学习笔记
html,body,div,span,applet,object,iframe,h1,h2,h3,h4,h5,h6,p,blockquote,pre,a,abbr,acronym,address,bi ...
- Hive基本语法操练
建表规则如下: CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment ...
- 从零自学Hadoop(16):Hive数据导入导出,集群数据迁移上
阅读目录 序 导入文件到Hive 将其他表的查询结果导入表 动态分区插入 将SQL语句的值插入到表中 模拟数据文件下载 系列索引 本文版权归mephisto和博客园共有,欢迎转载,但须保留此段声明,并 ...
随机推荐
- Tomcat性能优化(二) 启动参数设置
一.tomcat绿色版设置方法 进入tomcat/bin目录下,找到catalina.bat文件在文件首行中插入下面这段配置即可. set JAVA_OPTS=-server -Djava.awt.h ...
- Webpack实例教程及模块化规范
Webpack 是当下最热门的前端资源模块化管理和打包工具.它能够将很多松散的模块依照依赖和规则打包成符合生产环境部署的前端资源. 通过 loader 的转换,不论什么形式的资源都能够视作模块,比方 ...
- PHP多进程编程(一)
虽然PHP 中,多进程用的比较的少.但是毕竟可能是会用到了.我最近就遇到这样一个问题,用户提交几百个url以后,要读出这个url 中的标题. 当然,你不希望用户等待的太久,10s 钟应该给出个答案.但 ...
- css中!important的用法总结
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- UEditor API 文档
来源:http://www.e4dai.com/ueditor-api/#ue.editor http://www.e4dai.com/ueditor-api/ UE.Editor 依赖 editor ...
- 用css制作星级评分
Step 1: XHTML <ul class="star-rating"> <li><a href="#" titl ...
- WPF 隧道路由事件
阅读本文前,请先了解 冒泡路由事件:http://www.cnblogs.com/andrew-blog/p/WPF_BubbledEvent.html 隧道路由事件的工作方式和冒泡路由事件相同,但方 ...
- 《C++ Primer Plus》学习笔记0
Hello,World! 本书版本:<C++ Primer Plus(第6版)中文版>C++是在C语言基础上开发的一种集面向对象编程.泛型编程和过程化编程于一体的编程语言,是C语言的超集. ...
- [转]Mac下cocos2dx-3.2+Xcode环境配置和项目创建
原文:http://blog.csdn.net/u012200908/article/details/38070885 这是有关环境配置的第二篇教程,第一篇讲的是win8下的环境配置.这里我们使用C+ ...
- List remove及ConcurrentModificationException异常
参考:http://blog.csdn.net/androidboy365/article/details/50540202/ 解决方案 // 1 使用Iterator提供的remove方法,用于删除 ...