#include<algorithm>
#include<cstdio>
#include<cstdlib>
#define N 5500
using namespace std;
typedef long long ll;
ll ct,cnt;
ll fac[N],num[N];
const int BASE[]={2,3,5,7,11,13,17,19,23};
ll Quick_Mul(ll a,ll p,ll MOD)
{
if(!p){
return 0;
}
ll ans=Quick_Mul(a,p>>1,MOD);
ans=(ans+ans)%MOD;
if((p&1ll)==1ll){
ans=ans+a%MOD%MOD;
}
return ans;
}
ll Quick_Pow(ll a,ll p,ll MOD)
{
if(!p){
return 1;
}
ll ans=Quick_Pow(a,p>>1,MOD);
ans=Quick_Mul(ans,ans,MOD);
if((p&1ll)==1ll){
ans=a%MOD*ans%MOD;
}
return ans;
}
bool test(ll n,ll a,ll d){
if(n==2){
return 1;
}
if(n==a){
return 0;
}
if(!(n&1)){
return 0;
}
while(!(d&1ll)){
d>>=1;
}
ll t=Quick_Pow(a,d,n);
if(t==1){
return 1;
}
while(d!=n-1ll && t!=n-1ll && t!=1ll){
t=Quick_Mul(t,t,n);
d<<=1;
}
return t==n-1ll;
}
bool Miller_Rabin(ll n){
if(n==1 || n==3825123056546413051ll){
return 0;
}
for(int i=0;i<9;++i){
if(n==(ll)BASE[i]){
return 1;
}
if(!test(n,(ll)BASE[i],n-1ll)){
return 0;
}
}
return 1;
}
ll pollard_rho(ll n,ll c){
ll i=1,k=2;
ll x=rand()%(n-1)+1;
ll y=x;
while(1){
i++;
x=(Quick_Mul(x,x,n)+c)%n;
ll d=__gcd((y-x+n)%n,n);
if(1ll<d &&d<n){
return d;
}
if(y==x){
return n;
}
if(i==k){
y=x;
k<<=1;
}
}
}
void find(ll n,int c){
if(n==1){
return;
}
if(Miller_Rabin(n)){
fac[ct++]=n;
return;
}
ll p=n;
ll k=c;
while(p>=n){
p=pollard_rho(p,c--);
}
find(p,k);
find(n/p,k);
}
ll n;
int main(){
srand(233);
while(scanf("%I64d",&n)!=EOF){
ct=0;
find(n,120);
sort(fac,fac+ct);
num[0]=1;
int k=1;
for(int i=1;i<ct;++i){
if(fac[i]==fac[i-1]){
++num[k-1];
}
else{
num[k]=1;
fac[k++]=fac[i];
}
}
cnt=k;
for(int i=0;i<cnt;++i){
printf("%I64d^%I64d\n",fac[i],num[i]);
}
puts("");
}
return 0;
}

Pollard-rho算法:模板的更多相关文章

  1. Pollard Rho算法浅谈

    Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...

  2. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  3. Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法

    BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][ ...

  4. 初学Pollard Rho算法

    前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...

  5. Pollard Rho 算法简介

    \(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...

  6. 大整数分解质因数(Pollard rho算法)

    #include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> ...

  7. BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...

  8. 【快速因数分解】Pollard's Rho 算法

    Pollard-Rho 是一个很神奇的算法,用于在 $O(n^{\frac{1}4}) $的期望时间复杂度内计算合数 n 的某个非平凡因子(除了1和它本身以外能整除它的数).事书上给出的复杂度是 \( ...

  9. Miller-Rabin 素性测试 与 Pollard Rho 大整数分解

    \(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...

  10. Pollard Rho因子分解算法

    有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Po ...

随机推荐

  1. c++ virtual总结

    virtual-关键字用于修饰成员函数时,有以下特性 1.用于修饰的基类的成员函数,被修饰的基类成员函数-其派生类的同名成员函数也默认带有virtual 关键字2.当virtual 用于修饰析构函数( ...

  2. 使用vscode实现git同步

    用了git最方便的就是项目同步管理,回到家打开vscode只需要点击一下pull就能全部同步过来.是不是很方便....毕竟之前我都是拿u盘拷贝回家或者存到云盘再下载下来..   我这里之前用的是国内的 ...

  3. makefile初步制作,arm-linux- (gcc/ld/objcopy/objdump)详解【转】

    转自:http://www.cnblogs.com/lifexy/p/7065175.html 在linux中输入vi Makefile 来实现创建Makefile文件 注意:命令行前必须加TAB键 ...

  4. 《30天自制操作系统》笔记(01)——hello bitzhuwei’s OS!【转】

    转自:http://www.cnblogs.com/bitzhuwei/p/OS-in-30-days-01-hello-bitzhuwei-OS.html 阅读目录(Content) 最初的OS代码 ...

  5. Eclipse java项目转换为web项目

    1.打开.project文件,并修改文件, 修改如下: 找到:<natures> </natures>代码段,在代码段中加入如下内容并保存: <nature>org ...

  6. 非交互式shell脚本案例-实现自主从oracle数据库获取相关数据,并在制定目录生成相应规则的文件脚本

    get_task_id 脚本内容 #!/usr/bin/expect#配置登陆数据库的端口set port 22#配置登陆数据库的ip地址set oracleip 10.0.4.41#配置数据库实例名 ...

  7. C/C++——static修饰符

    1. static变量 static 用来说明静态变量.如果是在函数外面定义的,那么其效果和全局变量类似,但是,static定义的变量只能在当前c程序文件中使用,在另一个c代码里面,即使使用exter ...

  8. C#串口serialPort操作

    现在大多数硬件设备均采用串口技术与计算机相连,因此串口的应用程序开发越来越普遍.例如,在计算机没有安装网卡的情况下,将本机上的一些信息数据 传输到另一台计算机上,那么利用串口通信就可以实现.运行本程序 ...

  9. HDU 2544 最短路(floyd+bellman-ford+spfa+dijkstra队列优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目大意:找点1到点n的最短路(无向图) 练一下最短路... dijkstra+队列优化: #i ...

  10. gtk+学习笔记(三)

    gtk感觉函数好多,需要记好多函数,还是多练习,多总结,今天写了一个登陆窗口,很简单,主要是为了加深对这些东西的记忆,直接贴代码 #include<gtk/gtk.h> static Gt ...