Pollard-rho算法:模板
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#define N 5500
using namespace std;
typedef long long ll;
ll ct,cnt;
ll fac[N],num[N];
const int BASE[]={2,3,5,7,11,13,17,19,23};
ll Quick_Mul(ll a,ll p,ll MOD)
{
if(!p){
return 0;
}
ll ans=Quick_Mul(a,p>>1,MOD);
ans=(ans+ans)%MOD;
if((p&1ll)==1ll){
ans=ans+a%MOD%MOD;
}
return ans;
}
ll Quick_Pow(ll a,ll p,ll MOD)
{
if(!p){
return 1;
}
ll ans=Quick_Pow(a,p>>1,MOD);
ans=Quick_Mul(ans,ans,MOD);
if((p&1ll)==1ll){
ans=a%MOD*ans%MOD;
}
return ans;
}
bool test(ll n,ll a,ll d){
if(n==2){
return 1;
}
if(n==a){
return 0;
}
if(!(n&1)){
return 0;
}
while(!(d&1ll)){
d>>=1;
}
ll t=Quick_Pow(a,d,n);
if(t==1){
return 1;
}
while(d!=n-1ll && t!=n-1ll && t!=1ll){
t=Quick_Mul(t,t,n);
d<<=1;
}
return t==n-1ll;
}
bool Miller_Rabin(ll n){
if(n==1 || n==3825123056546413051ll){
return 0;
}
for(int i=0;i<9;++i){
if(n==(ll)BASE[i]){
return 1;
}
if(!test(n,(ll)BASE[i],n-1ll)){
return 0;
}
}
return 1;
}
ll pollard_rho(ll n,ll c){
ll i=1,k=2;
ll x=rand()%(n-1)+1;
ll y=x;
while(1){
i++;
x=(Quick_Mul(x,x,n)+c)%n;
ll d=__gcd((y-x+n)%n,n);
if(1ll<d &&d<n){
return d;
}
if(y==x){
return n;
}
if(i==k){
y=x;
k<<=1;
}
}
}
void find(ll n,int c){
if(n==1){
return;
}
if(Miller_Rabin(n)){
fac[ct++]=n;
return;
}
ll p=n;
ll k=c;
while(p>=n){
p=pollard_rho(p,c--);
}
find(p,k);
find(n/p,k);
}
ll n;
int main(){
srand(233);
while(scanf("%I64d",&n)!=EOF){
ct=0;
find(n,120);
sort(fac,fac+ct);
num[0]=1;
int k=1;
for(int i=1;i<ct;++i){
if(fac[i]==fac[i-1]){
++num[k-1];
}
else{
num[k]=1;
fac[k++]=fac[i];
}
}
cnt=k;
for(int i=0;i<cnt;++i){
printf("%I64d^%I64d\n",fac[i],num[i]);
}
puts("");
}
return 0;
}
Pollard-rho算法:模板的更多相关文章
- Pollard Rho算法浅谈
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 1044 Solved: 322[Submit][ ...
- 初学Pollard Rho算法
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...
- Pollard Rho 算法简介
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...
- 大整数分解质因数(Pollard rho算法)
#include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> ...
- BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...
- 【快速因数分解】Pollard's Rho 算法
Pollard-Rho 是一个很神奇的算法,用于在 $O(n^{\frac{1}4}) $的期望时间复杂度内计算合数 n 的某个非平凡因子(除了1和它本身以外能整除它的数).事书上给出的复杂度是 \( ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
- Pollard Rho因子分解算法
有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Po ...
随机推荐
- [CodePlus 2017 11月赛]晨跑 题解(辗转相除法求GCD)
[CodePlus 2017 11月赛]晨跑 Description "无体育,不清华"."每天锻炼一小时,健康工作五十年,幸福生活一辈子".在清华,体育运动绝 ...
- Python中单引号,双引号,三引号
1.单引号与双引号的区别 s1=‘let‘s go’(明显我们是想用单引号表示let’s go这个字符串的,但是python只知道用‘’来表示字符串,所以python就把字符串中的‘字符当成单引号处理 ...
- linux 下 genymotion 模拟器不能安装app
提示: "应用未安装" 解决方法: 下载: Genymotion-ARM-Translation_v1.1.zip 进入genymotion 的tools用adb传进去: ./ad ...
- phinx:php数据库迁移
Phinx使你的php app进行数据迁移的过程变得异常轻松,在五分钟之内你就可以安装好Phinx 并进行数据迁移. 特性 使用php代码进行数据迁移 部署模式下迁移 五分钟之内使用 不再担心数据库的 ...
- 宋牧春: Linux设备树文件结构与解析深度分析(1) 【转】
转自:https://mp.weixin.qq.com/s/OX-aXd5MYlE_YoZ3p32qWA 作者简介 宋牧春,linux内核爱好者,喜欢阅读各种开源代码(uboot.linux.ucos ...
- 用C#实现通过串口对设备的数据采集--Server层
今天中午没睡午觉,头昏眼花的,实在写不了代码,把这几天写的Server层数据采集的程序整理了一下. WatrLevelDataCollectServer.cs using System; using ...
- puppet practice
目标 试验环境有两台主机(VM)构成,一台是master,一台是agent,完成以下工作: 新建用户newuser; 安装 ubuntu-cloud-keyring package,更改文件/etc/ ...
- windows 10开启bash on windows,配置sshd,部署hadoop
1.安装Bash on Windows 这个参考官网步骤,很容易安装,https://msdn.microsoft.com/en-us/commandline/wsl/install_guide 安装 ...
- 深度学习方法(十二):卷积神经网络结构变化——Spatial Transformer Networks
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 今天具体介绍一个Google ...
- CSU 1351 Tree Counting
原题链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1351 DP题,毫无疑问.由于动态规划题目做得少.不熟悉,刚开始自己用f[i]表示用 i ...