3437: 小P的牧场

Time Limit: 10 Sec  Memory Limit: 128 MB

Description

小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Input

第一行一个整数 n 表示牧场数目

第二行包括n个整数,第i个整数表示ai

第三行包括n个整数,第i个整数表示bi

Output

只有一行,包括一个整数,表示最小花费

Sample Input

4
2424
3142

Sample Output

9
样例解释
选取牧场1,3,4建立控制站,最小费用为2+(2+1*1)+4=9。
1<=n<=1000000, 0 < a i ,bi < = 10000

HINT

  设定dp[i]为前在i处放控制台的答案

  那么

    dp[i] = min{ dp[j] + (s[i]-s[j])*i - (c[i]-c[j]) } +a[i]   ,j<i

  其中 s[i] 为 b[i] 的前缀和, c[i] 为 b[i]*i 的前缀和

#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000100
#define db double
char xB[<<],*xS=xB,*xTT=xB;
#define getc() (xS==xTT&&(xTT=(xS=xB)+fread(xB,1,1<<15,stdin),xS==xTT)?0:*xS++)
#define isd(c) (c>='0'&&c<='9')
inline int read(){
char xchh;
int xaa;
while(xchh=getc(),!isd(xchh));(xaa=xchh-'');
while(xchh=getc(),isd(xchh))xaa=xaa*+xchh-'';return xaa;
}
ll c[N],s[N],dp[N],n,a[N],b[N];
int l,r,q[N],now;
db cal(int j,int k){return (db)(dp[j]-dp[k]+c[j]-c[k])/(db)(s[j]-s[k]);}
int main()
{
n=read();
for(int i=;i<=n;i++) a[i]=read();
for(int i=;i<=n;i++) b[i]=read();
for(int i=;i<=n;i++) s[i]+=s[i-]+b[i];
for(int i=;i<=n;i++) c[i]+=c[i-]+b[i]*i;
for(int i=;i<=n;i++)
{
while(l<r&&cal(q[l],q[l+])<i) l++;
now=q[l];
dp[i]=dp[now]+(s[i]-s[now])*i-(c[i]-c[now])+a[i];
while(l<r&&cal(i,q[r])<cal(q[r],q[r-])) r--;
q[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}

bzoj 3437: 小P的牧场 -- 斜率优化的更多相关文章

  1. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  2. bzoj3437小P的牧场 斜率优化dp

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1542  Solved: 849[Submit][Status][Discus ...

  3. BZOJ 3437 小P的牧场(斜率优化DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3437 [题目大意] n个牧场排成一行,需要在某些牧场上面建立控制站, 每个牧场上只能建 ...

  4. bzoj 3437: 小P的牧场【斜率优化】

    emmm妹想到要倒着推 先假设只在n建一个控制站,这样的费用是\( \sum_{i=1}^{n} b[i]*(n-i) \)的 然后设f[i]为在i到n键控制站,并且i一定建一个,能最多节省下的费用, ...

  5. 【BZOJ3437】小P的牧场 斜率优化

    [BZOJ3437]小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这 ...

  6. 【bzoj3437】小P的牧场 斜率优化dp

    题目描述 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个 ...

  7. BZOJ3437:小P的牧场(斜率优化DP)

    Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...

  8. BZOJ 3437: 小P的牧场

    传送门 显然考虑 $dp$,设 $f[i]$ 表示前 $i$ 个牧场都被控制的最小代价 那么枚举所有 $j<i$ ,$f[i]=f[j]+val[i][j]+A[i]$ $val[i][j]$ ...

  9. bzoj3427小P的牧场(斜率优化dp)

    小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧 ...

随机推荐

  1. python3爬虫.2.伪装浏览器

    有的网页在爬取时候会报错返回 urllib.error.HTTPError: HTTP Error 403: Forbidden 这是网址在检测连接对象,所以需要伪装浏览器,设置User Agent ...

  2. oracle 归档模式、补充日志

    1.归档模式: Oracle数据库有联机重做日志,这个日志是记录对数据库所做的修改,比如插入,删除,更新数据等,对这些操作都会记录在联机重做日志里.一般数据库至少要有2个联机重做日志组.当一个联机重做 ...

  3. ogg:Extract 进程遇长事务执行 Forcestop 引发的惨案

    http://www.linuxidc.com/Linux/2015-04/115777.htm SQL> select t.addr,t.START_DATE from v$transacti ...

  4. 记一次spring boot中MongoDB Prematurely reached end of stream的异常解决

    在spring boot项目中使用了mongodb,当一段时间没有操作mongodb,下次操作mongodb时就会出现异常.异常如下: org.springframework.data.mongodb ...

  5. luogu P1549 棋盘问题(2) 题解

    luogu P1549 棋盘问题(2) 题解 题目描述 在\(N * N\)的棋盘上\((1≤N≤10)\),填入\(1,2,-,N^2\)共\(N^2\)个数,使得任意两个相邻的数之和为素数. 例如 ...

  6. C语言小程序之整除

    看到有人要求用C语言写这样一个小程序,就拿来温习一下 需求:输出从1到2015这2015个自然数中,能被4或5整除,但不能被30整除的数,并计算有多少个数.   #include<stdio.h ...

  7. [实战]MVC5+EF6+MySql企业网盘实战(9)——编辑文件名

    写在前面 上篇文章实现了文件的下载,本篇文章将实现编辑文件名的功能. 系列文章 [EF]vs15+ef6+mysql code first方式 [实战]MVC5+EF6+MySql企业网盘实战(1) ...

  8. chrome浏览器使用HTML5预览图片

    chrome浏览器对HTML5支持的较好,使用HTML5的File相关的api,可以实现前台页面在选定图片后,不上传即可预览.代码如下: 1.前台代码,使用<input type="f ...

  9. 在LoadRunner中从数组类型的参数随机取值的方法

    在LoadRunner中从数组类型的参数随机取值的方法 使用web_reg_save_param做关联后,有时候会有多个匹配值. 为了模仿用户行为随机取一个值为后续transcation所用,可以使用 ...

  10. HTML5 Video/Audio播放本地文件

    这段时间经常看到开发者在反复询问同一个问题,为什么通过设置src属性,不能播放本地的媒体文件?例如video.src=”D:\test.mp4”. 这是因为浏览器中的JavaScript不能直接直接访 ...