3437: 小P的牧场

Time Limit: 10 Sec  Memory Limit: 128 MB

Description

小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Input

第一行一个整数 n 表示牧场数目

第二行包括n个整数,第i个整数表示ai

第三行包括n个整数,第i个整数表示bi

Output

只有一行,包括一个整数,表示最小花费

Sample Input

4
2424
3142

Sample Output

9
样例解释
选取牧场1,3,4建立控制站,最小费用为2+(2+1*1)+4=9。
1<=n<=1000000, 0 < a i ,bi < = 10000

HINT

  设定dp[i]为前在i处放控制台的答案

  那么

    dp[i] = min{ dp[j] + (s[i]-s[j])*i - (c[i]-c[j]) } +a[i]   ,j<i

  其中 s[i] 为 b[i] 的前缀和, c[i] 为 b[i]*i 的前缀和

#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000100
#define db double
char xB[<<],*xS=xB,*xTT=xB;
#define getc() (xS==xTT&&(xTT=(xS=xB)+fread(xB,1,1<<15,stdin),xS==xTT)?0:*xS++)
#define isd(c) (c>='0'&&c<='9')
inline int read(){
char xchh;
int xaa;
while(xchh=getc(),!isd(xchh));(xaa=xchh-'');
while(xchh=getc(),isd(xchh))xaa=xaa*+xchh-'';return xaa;
}
ll c[N],s[N],dp[N],n,a[N],b[N];
int l,r,q[N],now;
db cal(int j,int k){return (db)(dp[j]-dp[k]+c[j]-c[k])/(db)(s[j]-s[k]);}
int main()
{
n=read();
for(int i=;i<=n;i++) a[i]=read();
for(int i=;i<=n;i++) b[i]=read();
for(int i=;i<=n;i++) s[i]+=s[i-]+b[i];
for(int i=;i<=n;i++) c[i]+=c[i-]+b[i]*i;
for(int i=;i<=n;i++)
{
while(l<r&&cal(q[l],q[l+])<i) l++;
now=q[l];
dp[i]=dp[now]+(s[i]-s[now])*i-(c[i]-c[now])+a[i];
while(l<r&&cal(i,q[r])<cal(q[r],q[r-])) r--;
q[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}

bzoj 3437: 小P的牧场 -- 斜率优化的更多相关文章

  1. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  2. bzoj3437小P的牧场 斜率优化dp

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1542  Solved: 849[Submit][Status][Discus ...

  3. BZOJ 3437 小P的牧场(斜率优化DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3437 [题目大意] n个牧场排成一行,需要在某些牧场上面建立控制站, 每个牧场上只能建 ...

  4. bzoj 3437: 小P的牧场【斜率优化】

    emmm妹想到要倒着推 先假设只在n建一个控制站,这样的费用是\( \sum_{i=1}^{n} b[i]*(n-i) \)的 然后设f[i]为在i到n键控制站,并且i一定建一个,能最多节省下的费用, ...

  5. 【BZOJ3437】小P的牧场 斜率优化

    [BZOJ3437]小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这 ...

  6. 【bzoj3437】小P的牧场 斜率优化dp

    题目描述 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个 ...

  7. BZOJ3437:小P的牧场(斜率优化DP)

    Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...

  8. BZOJ 3437: 小P的牧场

    传送门 显然考虑 $dp$,设 $f[i]$ 表示前 $i$ 个牧场都被控制的最小代价 那么枚举所有 $j<i$ ,$f[i]=f[j]+val[i][j]+A[i]$ $val[i][j]$ ...

  9. bzoj3427小P的牧场(斜率优化dp)

    小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧 ...

随机推荐

  1. gdb安装

    1.卸载原有gdb  以root用户登录  1.1 查询原有gdb包名,执行命令: rpm -q gdb  1.2 卸载原有gdb包,假设gdb包名为gdb-7.0-0.4.16,执行命令:rpm - ...

  2. C/C++——static修饰符

    1. static变量 static 用来说明静态变量.如果是在函数外面定义的,那么其效果和全局变量类似,但是,static定义的变量只能在当前c程序文件中使用,在另一个c代码里面,即使使用exter ...

  3. JavaScript变量命名规则:匈牙利命名法

    匈牙利命名法语法 变量名=类型+对象描述 类型指变量的类型 对象描述指对象名字全称或名字的一部分,要求有明确含义,命名要容易记忆容易理解. 提示 虽然JavaScript变量表面上没有类型,但是Jav ...

  4. v4l

    v4l 2011-11-08 11:01:54|  分类: 默认分类|举报|字号 订阅     第一个部分介绍一些v4l的基本概念和基本方法,利用系统API完成一系列函数以方便后续应用程序的开发和使用 ...

  5. 【摘要】JavaScript 的性能优化:加载和执行

    1.浏览器遇到js代码会暂停页面的下载和渲染,谁晓得js代码会不会把html给强奸(改变)了: 2.延迟脚本加载:defer 属性 <html> <head> <titl ...

  6. Codeforces 445A Boredom(DP+单调队列优化)

    题目链接:http://codeforces.com/problemset/problem/455/A 题目大意:有n个数,每次可以选择删除一个值为x的数,然后值为x-1,x+1的数也都会被删除,你可 ...

  7. UVA 11624 Fire!(两次BFS+记录最小着火时间)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  8. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  9. Native Apps、Web Apps

    Native Apps 指的是远程程序,一般依托于操作系统,有很强的交互,是一个完整的App,可拓展性强,需要用户下载安装使用 优点: 打造完美的用户体验 性能稳定 操作速度快,上手流畅 访问本地资源 ...

  10. CentOS7.6使用flatpak安装软件

    1.安装flatpak(CentOS 7已默认安装Flatpak) yum -y install flatpak 2.添加Flathub仓库 flatpak remote-add --if-not-e ...