机器学习笔记—混合高斯和 EM 算法
本文介绍密度估计的 EM(Expectation-Maximization,期望最大)。
假设有 {x(1),...,x(m)},因为是无监督学习算法,所以没有 y(i)。
我们通过指定联合分布 p(x(i),z(i))=p(x(i)|z(i))p(z(i)) 来对数据建模。这里 z(i)~Multinomial(Φ),其中 Φj≥0,Φ1+Φ2+...+Φk=1,参数 Φj 给定 p(z(i)=j),x(i)|z(i)=j~N(μj,∑j)。k 表示 z(i) 能取的值的个数,所以,通过从 {1,...,k} 中随机选择 z(i),x(i) 从 k 个依赖于 z(i) 的高斯中生成。这就是高斯混合模型。z(i) 是隐随机变量,它们是隐藏的,这增大了估计问题的难度。
模型的参数是 Φ,μ 和 ∑,为对它们做估计,数据的似然为:
如果通过对参数求导并设为 0 来解,会发现不可能在封闭形式中找到最大似然估计。
随机变量 z(i) 表示 x(i) 来自 k 个高斯分布中的哪一个,如果知道 z(i) 的值,最大似然估计问题就简单了
最大化后参数为:
可以看到,如果知道 z(i),最大似然估计就跟高斯判别分析模型的参数估计差不多,除了 z(i) 扮演类标识的角色。
尽管如此,在我们的密度估计问题中,z(i) 是未知的,怎么办?
EM 算法是一个迭代算法,主要分两步:在 E 步,猜测 z(i) 的值;在 M 步,基于猜测更新模型的参数。因为在 M 步假装第一步是正确的,最大化就变简单了。这是算法:
在 E 步,给定 x(i),使用当前参数,用贝叶斯规则计算 z(i) 的后验概率。
其中 p(x(i)|z(i)=j;μ;∑) 是由 x(i) 的以 μj 为均值和 ∑j 为方差的高斯密度估计出来的;p(z(i)=j;Φ) 是由 Φj 给定的。在 E 步计算的 wj(i) 代表 z(i) 的软估计。
如果拿 M 步的更新同上面 z(i) 已知时的公式做对比,它们是相等的,除了指示函数 I{z(i)=j} 以 wj(i) 代替。
EM 算法会让人想起 K-均值聚类,差别在于硬聚类绑定 c(i) 以软绑定 wj(i) 代替。同 K-均值类似,它也会陷入局部最优,所以多对初始参数赋几次值是个好主意。
很清楚,EM 算法对重复猜测未知 z(i) 有一个非常自然的解释,但它能保证收敛吗?下篇文章将更广地介绍 EM,使我们可以把它应用到其它包含隐变量的估计问题,也会有收敛的证明。
参考资料:
1、http://cs229.stanford.edu/notes/cs229-notes7b.pdf
机器学习笔记—混合高斯和 EM 算法的更多相关文章
- Python机器学习笔记:异常点检测算法——LOF(Local Outiler Factor)
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 在数据挖掘方面,经常需 ...
- 机器学习(七)EM算法、GMM
一.GMM算法 EM算法实在是难以介绍清楚,因此我们用EM算法的一个特例GMM算法作为引入. 1.GMM算法问题描述 GMM模型称为混合高斯分布,顾名思义,它是由几组分别符合不同参数的高斯分布的数据混 ...
- 【机器学习】GMM和EM算法
机器学习算法-GMM和EM算法 目录 机器学习算法-GMM和EM算法 1. GMM模型 2. GMM模型参数求解 2.1 参数的求解 2.2 参数和的求解 3. GMM算法的实现 3.1 gmm类的定 ...
- 【机器学习笔记之四】Adaboost 算法
本文结构: 什么是集成学习? 为什么集成的效果就会好于单个学习器? 如何生成个体学习器? 什么是 Boosting? Adaboost 算法? 什么是集成学习 集成学习就是将多个弱的学习器结合起来组成 ...
- Stanford机器学习笔记-9. 聚类(K-means算法)
9. Clustering Content 9. Clustering 9.1 Supervised Learning and Unsupervised Learning 9.2 K-means al ...
- 吴恩达机器学习笔记58-协同过滤算法(Collaborative Filtering Algorithm)
在之前的基于内容的推荐系统中,对于每一部电影,我们都掌握了可用的特征,使用这些特征训练出了每一个用户的参数.相反地,如果我们拥有用户的参数,我们可以学习得出电影的特征. 但是如果我们既没有用户的参数, ...
- 吴恩达机器学习笔记55-异常检测算法的特征选择(Choosing What Features to Use of Anomaly Detection)
对于异常检测算法,使用特征是至关重要的,下面谈谈如何选择特征: 异常检测假设特征符合高斯分布,如果数据的分布不是高斯分布,异常检测算法也能够工作,但是最好还是将数据转换成高斯分布,例如使用对数函数:
- 机器学习笔记(五) K-近邻算法
K-近邻算法 (一)定义:如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别. (二)相似的样本,特征之间的值应该是相近的,使用k-近邻算法需要做标准化处理.否 ...
- [吴恩达机器学习笔记]14降维3-4PCA算法原理
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.3主成分分析原理Proncipal Component Analysis Problem Formulation 主成分分析( ...
随机推荐
- King's Game---hdu5643(约瑟夫环)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5643 约瑟夫环问题的原来描述为,设有编号为1,2,……,n的n(n>0)个人围成一个圈,从 ...
- Wow! Such Doge!---hdu4847(字符串水题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4847 题意就是求给出的文章中共有多少个doge,不区分大小写直接用strstr做就可以了: #incl ...
- 用rm递归递归删除子目录下所有.o后缀文件
find . -name "*.o" | xargs rm -f 可以通过管道命令来操作,先find出主目录 下想删除的文件,然后通过“xargs”这个构造参数列表并运行命令 ...
- https通讯原理
https通讯原理 HTTPS在传输数据之前需要客户端(浏览器)与服务端(网站)之间进行一次握手,在握手过程中将确立双方加密传输数据的密码信息.TLS/SSL协议不仅仅是一套加密传输的协议,更是一件经 ...
- XTU1198:Candy(背包)
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/libin56842/article/details/26182519 题目描写叙述 Henry和Le ...
- Matlab GUI memo
有一段时间没写博客,一周4篇文章都坚持不下来,不知道写哪个方面的内容,写研究相关就怕论文查重查到,其他方面也没太多时间去学.还是花时间多学点其他方面.废话到此,很早就做过matlab gui相关,现在 ...
- 47. Permutations II (全排列有重复的元素)
Given a collection of numbers that might contain duplicates, return all possible unique permutations ...
- topcoder SRM712 Div1 LR
题目: Problem Statement We have a cyclic array A of length n. For each valid i, element i-1 the l ...
- SSH的加入顺序*(转)
首先创建一个 New => Web Project 起名 demo 然后在项目名称上 点击鼠标右键 选择 MyEclipse => Add Speing Capabilites... ...
- Jmeter使用流程及简单分析监控(转载)
转载自:https://www.cnblogs.com/linglingyuese/archive/2013/03/04/linglingyuese-one.html#undefined 一.安装Jm ...