D. Broken robot
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You received as a gift a very clever robot walking on a rectangular board. Unfortunately, you understood that it is broken and behaves rather strangely (randomly). The board consists of N rows
and Mcolumns of cells. The robot is initially at some cell on the i-th
row and the j-th column. Then at every step the robot could go to some another cell. The aim is to go to the bottommost (N-th)
row. The robot can stay at it's current cell, move to the left, move to the right, or move to the cell below the current. If the robot is in the leftmost column it cannot move to the left, and if it is in the rightmost column it cannot move to the right. At
every step all possible moves are equally probable. Return the expected number of step to reach the bottommost row.

Input

On the first line you will be given two space separated integers N andM (1 ≤ N, M ≤ 1000).
On the second line you will be given another two space separated integers i and j (1 ≤ i ≤ N, 1 ≤ j ≤ M)
— the number of the initial row and the number of the initial column. Note that, (1, 1) is the upper left corner of the board and (N, M) is
the bottom right corner.

Output

Output the expected number of steps on a line of itself with at least 4digits after the decimal point.

Examples
input
10 10
10 4
output
0.0000000000
input
10 14
5 14
output
18.0038068653
概率DP
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <vector> using namespace std;
int n,m;
int x,y;
double dp[1005][1005];
int main()
{
scanf("%d%d",&n,&m);
scanf("%d%d",&x,&y);
double p1=1.0/3;
double p2=1.0/4;
double p3=1.0/2;
for(int i=n-1;i>=x;i--)
{
for(int t=0;t<=50;t++)
{
for(int j=1;j<=m;j++)
{
if(m==1)
dp[i][j]=(dp[i+1][j]*p3+1)/(1-p3);
else if(j==1)
dp[i][j]=(dp[i][j+1]*p1+dp[i+1][j]*p1+1)/(1-p1);
else if(j==m)
dp[i][j]=(dp[i][j-1]*p1+dp[i+1][j]*p1+1)/(1-p1);
else
dp[i][j]=(dp[i][j+1]*p2+dp[i][j-1]*p2+dp[i+1][j]*p2+1)/(1-p2);
}
}
}
printf("%.6f\n",dp[x][y]);
return 0;
}

CodeForces 24D Broken robot (概率DP)的更多相关文章

  1. Codeforces.24D.Broken robot(期望DP 高斯消元)

    题目链接 可能这儿的会更易懂一些(表示不想再多写了). 令\(f[i][j]\)表示从\((i,j)\)到达最后一行的期望步数.那么有\(f[n][j]=0\). 若\(m=1\),答案是\(2(n- ...

  2. CodeForces 24D Broken robot(期望+高斯消元)

    CodeForces 24D Broken robot 大致题意:你有一个n行m列的矩形板,有一个机器人在开始在第i行第j列,它每一步会随机从可以选择的方案里任选一个(向下走一格,向左走一格,向右走一 ...

  3. CodeForces 24D Broken Robot

    题意:n*m的棋盘,一个机器人在(i,j)处,每次等概率地停在原地,向左移动一格,向右移动一格,向下移动一格(不能移出棋盘).求走到最后一行所需期望步数.n<=1000,m<=1000 一 ...

  4. codeforces 24d Broken robot 期望+高斯消元

    题目传送门 题意:在n*m的网格上,有一个机器人从(x,y)出发,每次等概率的向右.向左.向下走一步或者留在原地,在最左边时不能向右走,最右边时不能像左走.问走到最后一行的期望. 思路:显然倒着算期望 ...

  5. HDU 4576 Robot(概率dp)

    题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...

  6. CodeForces - 24D :Broken robot (DP+三对角矩阵高斯消元 随机)

    pro:给定N*M的矩阵,以及初始玩家位置. 规定玩家每次会等概率的向左走,向右走,向下走,原地不动,问走到最后一行的期望.保留4位小数. sol:可以列出方程,高斯消元即可,发现是三角矩阵,O(N* ...

  7. BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元

    大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...

  8. 【CF24D】Broken Robot (DP+高斯消元)

    题目链接 题意:给定一个\(n\times m\)的矩阵,每次可以向→↓←移动一格,也可以原地不动,求从\((x,y)\)到最后一行的期望步数. 此题标签\(DP\) 看到上面这个肯定会想到 方法一: ...

  9. Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)

    Problem   Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...

随机推荐

  1. 8086汇编之 CALL 和 RET指令

    Ret 和 call 也是转移指令,可是他们跟jmp不同的是,这两个转移指令都跟栈有关系. <1> ret 用栈中的数据改动IP的地址,从而实现近转移 ( ip ) = ( (ss)*16 ...

  2. sqlzoo练习答案--SUM and COUNT

    World Country Profile: Aggregate functions This tutorial is about aggregate functions such as COUNT, ...

  3. location 符号

    元字符 描述 \ 将下一个字符标记符.或一个向后引用.或一个八进制转义符.例如,“\\n”匹配\n.“\n”匹配换行符.序列“\\”匹配“\”而“\(”则匹配“(”.即相当于多种编程语言中都有的“转义 ...

  4. cocos2dx 3.x 开发环境搭建

    1. 准备工作 (1)VS2012 (2)cocos2dx cn.cocos2d-x.org/download (3)python 新版本的cocos2dx 需要python编译 2. 安装软件 (1 ...

  5. NIO--SocketChannel发送HTTP请求

    import java.net.InetSocketAddress; import java.nio.ByteBuffer; import java.nio.channels.SocketChanne ...

  6. python判断一个对象是否可迭代

    如何判断一个对象是可迭代对象? 方法是通过collections模块的Iterable类型判断: >>> from collections import Iterable >& ...

  7. (转载) STL中map用法详解

    Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能力,由于这个特性,它完成有可能在我们处理一对一数据的时候 ...

  8. 对redis深入理解

    1.Redis有哪些数据结构? 字符串String.字典Hash.列表List.集合Set.有序集合SortedSet.如果你是Redis中高级用户,还需要加上下面几种数据结构HyperLogLog. ...

  9. SenCha Touch 与 EXTJS 安装Myeclipse 插件

    http://www.cnblogs.com/jirimutu01/default.html 关于SenchaEclipsePlugin插件的安装和使用 使用过eclipse开发java程序的人都知道 ...

  10. Oracle拉出在sqlserver建表的语句

    我们将Oracle数据同步到sqlserver时,是先得在sqlserver端建表的. 复杂的字段我们不同步,就仅仅考虑以下四种数据类型. Oracle到SQLServer做的映射: int -> ...