架构:skip-gram(慢、对罕见字有利)vs CBOW(快)

·         训练算法:分层softmax(对罕见字有利)vs 负采样(对常见词和低纬向量有利)

  负例采样准确率提高,速度会慢,不使用negative sampling的word2vec本身非常快,但是准确性并不高

·         欠采样频繁词:可以提高结果的准确性和速度(适用范围1e-3到1e-5)

·         文本(window)大小:skip-gram通常在10附近,CBOW通常在5附近

 

可以看出,skip-gram进行预测的次数是要多于cbow的:因为每个词在作为中心词时,都要使用周围词进行预测一次。这样相当于比cbow的方法多进行了K次(假设K为窗口大小)

,因此时间的复杂度为O(KV),训练时间要比cbow要长。

用gensim函数库训练Word2Vec模型有很多配置参数。这里对gensim文档的Word2Vec函数的参数说明进行翻译,以便不时之需。

class gensim.models.word2vec.Word2Vec(sentences=None,size=100,alpha=0.025,window=5min_count=5max_vocab_size=Nonesample=0.001,seed=1workers=3,min_alpha=0.0001sg=0hs=0negative=5,cbow_mean=1hashfxn=<built-in function hash>,iter=5,null_word=0trim_rule=Nonesorted_vocab=1batch_words=10000)

参数:

·  sentences:可以是一个·ist,对于大语料集,建议使用BrownCorpus,Text8Corpus或·ineSentence构建。
·  sg: 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法。
·  size:是指特征向量的维度,默认为100。大的size需要更多的训练数据,但是效果会更好. 推荐值为几十到几百。
·  window:表示当前词与预测词在一个句子中的最大距离是多少
·  alpha: 是学习速率
·  seed:用于随机数发生器。与初始化词向量有关。
·  min_count: 可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5
·  max_vocab_size: 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制。
·  sample: 高频词汇的随机降采样的配置阈值,默认为1e-3,范围是(0,1e-5)
·  workers参数控制训练的并行数。
·  hs: 如果为1则会采用hierarchica·softmax技巧。如果设置为0(defau·t),则negative sampling会被使用。
·  negative: 如果>0,则会采用negativesamp·ing,用于设置多少个noise words
·  cbow_mean: 如果为0,则采用上下文词向量的和,如果为1(defau·t)则采用均值。只有使用CBOW的时候才起作用。
·  hashfxn: hash函数来初始化权重。默认使用python的hash函数
·  iter: 迭代次数,默认为5
·  trim_rule: 用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)或者一个接受()并返回RU·E_DISCARD,uti·s.RU·E_KEEP或者uti·s.RU·E_DEFAU·T的函数。
·  sorted_vocab: 如果为1(defau·t),则在分配word index 的时候会先对单词基于频率降序排序。
·  batch_words:每一批的传递给线程的单词的数量,默认为10000

Text8Corpus
# the entire corpus is one gigantic line -- there are no sentence marks at all
# so just split the sequence of tokens arbitrarily: 1 sentence = 1000 tokens 
 
标准的WordSim353 数据 作为word2vec评价指标
自我感觉还是用具体的task去衡量吧。。。
 
 

word2vec参数的更多相关文章

  1. word2vec参数调整 及lda调参

     一.word2vec调参   ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -neg ...

  2. word2vec参数理解

    之前写了对word2vec的一些简单理解,实践过程中需要对其参数有较深的了解: class gensim.models.word2vec.Word2Vec(sentences=None,size=10 ...

  3. word2vec模型评估方案

    1.word2vec参数详解 · sentences:可以是一个·ist,对于大语料集,建议使用BrownCorpus,Text8Corpus或·ineSentence构建.· sg: 用于设置训练算 ...

  4. TensorFlow v2.0实现Word2Vec算法

    使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. " ...

  5. 词向量实践(gensim)

    词向量训练步骤: 分词并去停用词 词频过滤 训练 项目完整地址:https://github.com/cyandn/practice/tree/master/Word2Vec gensim中Word2 ...

  6. 【Model Log】模型评估指标可视化,自动画Loss、Accuracy曲线图工具,无需人工参与!

    1. Model Log 介绍 Model Log 是一款基于 Python3 的轻量级机器学习(Machine Learning).深度学习(Deep Learning)模型训练评估指标可视化工具, ...

  7. 斯坦福NLP课程 | 第2讲 - 词向量进阶

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  8. Word2Vec模型参数 详解

    用gensim函数库训练Word2Vec模型有很多配置参数.这里对gensim文档的Word2Vec函数的参数说明进行翻译,以便不时之需. class gensim.models.word2vec.W ...

  9. [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型

    深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...

随机推荐

  1. Win10 安装 Linux 子系统

    Win10 安装 Linux 子系统 因为最近要使用Linux搭服务器,但是用远程的话延迟很烦,用双系统切换很麻烦,用虚拟机又会有点卡,刚好Windows10最近更新了正式版的WSL(windows下 ...

  2. 利用script和scriptlet moniker绕过脚本白名单限制

    没事儿看了一下subtee和enigma0x3今年在BSides Nashville 2017上的演讲,觉得这两个猥琐男简直不能再猥琐了 :-)其中有一个猥琐小技巧,又可以让我们好好hunting一番 ...

  3. POJ.3279 Fliptile (搜索+二进制枚举+开关问题)

    POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...

  4. 【单调栈】【CF5E】 Bindian Signalizing

    传送门 Description 给你一个环,环上有一些点,点有点权.定义环上两点能相互看见当且仅当两点间存在一个弧使得弧上不存在一个点的点权大于着两个点.求一共有多少个点能互相看到 Input 第一行 ...

  5. Oracle中rank() over, dense_rank(), row_number() 的区别

    摘自:http://www.linuxidc.com/Linux/2015-04/116349.htm Oracle 中 rank() over, dense_rank(), row_number() ...

  6. Virtual Box虚拟机下CentOS网络设置

    VirtualBox中有4中网络连接方式: a. NAT                          网络地址转换模式(Network Address Translation)b. Bridge ...

  7. shell函数使用

    函数定义格式: 和js有点类似,不过在 shell 中 function 关键字是可选的. 如: sum { // shell 语句 } function sum() { // shell 语句 } ...

  8. poppo大根堆的原理与实现。

    大根堆的定义:1 大根堆是一个大根树 2 大根堆是一个完全二叉树 所以大根堆用数组表示是连续的,不会出现空白字段. 对于大根堆的插入 对于大根堆的插入,可以在排序前确定大根堆的形状,可以确定元素5从位 ...

  9. 11.UiAutomator 相关JAVA知识

    一.封装方法与模块化用例 1.方法: 在JAVA中,方法就好比日常生活中的一个动作,由动作组合成一系列完整的操作. 方法结构: 方法修饰符 方法返回值类型 方法名 { 方法体 } 比如: public ...

  10. 【转】解决virt-manager启动管理器出错:unsupported format character

    来源:http://blog.csdn.net/z_yttt/article/details/71192144 经验证OK.   今天打开virt-manager出错,报错信息如下: 启动管理器出错: ...