1. 四个概念定义:TP、FP、TN、FN

先看四个概念定义: 
- TP,True Positive 
- FP,False Positive 
- TN,True Negative 
- FN,False Negative

如何理解记忆这四个概念定义呢?

举个简单的二元分类问题 例子:

假设,我们要对某一封邮件做出一个判定,判定这封邮件是垃圾邮件、还是这封邮件不是垃圾邮件?

如果判定是垃圾邮件,那就是做出(Positive)的判定; 
如果判定不是垃圾邮件,那就做出(Negative)的判定。

True Positive(TP)意思表示做出Positive的判定,而且判定是正确的。因此,TP的数值表示正确的Positive判定的个数。 
同理,False Positive(TP)数值表示错误的Positive判定的个数。 
依此,True Negative(TN)数值表示正确的Negative判定个数。 
False Negative(FN)数值表示错误的Negative判定个数。

2. Precision、Recall、Accuracy、F1 Score(F Score)

四个概念定义:

precision = TP / (TP + FP)
recall = TP / (TP + FN)
accuracy = (TP + TN) / (TP + FP + TN + FN)
F1 Score = 2*P*R/(P+R),其中P和R分别为 precision 和 recall

如果某个二元分类问题,训练拟合得到了几个模型假设,那么通常我们选择在验证集上,F1 Score 数值最大的那个模型假设。

参考于http://www.cnblogs.com/jiangyi-uestc/p/6044282.html

机器学习中的 precision、recall、accuracy、F1 Score的更多相关文章

  1. 机器学习:评价分类结果(F1 Score)

    一.基础 疑问1:具体使用算法时,怎么通过精准率和召回率判断算法优劣? 根据具体使用场景而定: 例1:股票预测,未来该股票是升还是降?业务要求更精准的找到能够上升的股票:此情况下,模型精准率越高越优. ...

  2. 目标检测的评价标准mAP, Precision, Recall, Accuracy

    目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 A ...

  3. 机器学习--如何理解Accuracy, Precision, Recall, F1 score

    当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释 ...

  4. Precision,Recall,F1的计算

    Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negati ...

  5. 【Machine Learning】如何处理机器学习中的非均衡数据集?

    在机器学习中,我们常常会遇到不均衡的数据集.比如癌症数据集中,癌症样本的数量可能远少于非癌症样本的数量:在银行的信用数据集中,按期还款的客户数量可能远大于违约客户的样本数量.   比如非常有名的德国信 ...

  6. 机器学习中如何处理不平衡数据(imbalanced data)?

    推荐一篇英文的博客: 8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset 1.不平衡数据集带来的影响 一个不 ...

  7. 【笔记】F1 score

    F1 score 关于精准率和召回率 精准率和召回率可以很好的评价对于数据极度偏斜的二分类问题的算法,有个问题,毕竟是两个指标,有的时候这两个指标也会产生差异,对于不同的算法,精准率可能高一些,召回率 ...

  8. 【tf.keras】实现 F1 score、precision、recall 等 metric

    tf.keras.metric 里面竟然没有实现 F1 score.recall.precision 等指标,一开始觉得真不可思议.但这是有原因的,这些指标在 batch-wise 上计算都没有意义, ...

  9. 机器学习基础梳理—(accuracy,precision,recall浅谈)

    一.TP TN FP FN TP:标签为正例,预测为正例(P),即预测正确(T) TN:标签为负例,预测为负例(N),即预测正确(T) FP:标签为负例,预测为正例(P),即预测错误(F) FN:标签 ...

随机推荐

  1. [005] unique_sub_string

    [Description] Given a string, find the largest unique substring. e.g. str[] = "asdfghjkkjhgf&qu ...

  2. Python基础之杂货铺

    字符串格式化 Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-310 ...

  3. 003_循环(loop), 递归(recursion), 遍历(traversal), 迭代(iterate)的区别

    表示“重复”这个含义的词有很多, 比如循环(loop), 递归(recursion), 遍历(traversal), 迭代(iterate). 循环算是最基础的概念, 凡是重复执行一段代码, 都可以称 ...

  4. Shp上传至Oracle Spatial

    1.下载shp2sdo,将shp文件拷贝至shp2sdo相同路径下,打开windows命令窗口,执行: shp2sdo shp文件名 表名 -i id -s 4326 -d 例如:shp2sdo ci ...

  5. hdu 5505(数论-gcd的应用)

    GT and numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  6. a:hover伪类在ios移动端浏览器内无效的解决方法

    a:hover 设置的样式在ios系统的浏览器内显示不出来,看来在iOS系统的移动设备中,需要在按钮元素或body/html上绑定一个touchstart事件才能激活:active状态. 方法 一: ...

  7. 用numpy计算成交量加权平均价格(VWAP),并实现读写文件

    VWAP(Volume-Weighted Average Price,成交量加权平均价格)是一个非常重要的经济学量,它代表着金融资产的“平均”价格.某个价格的成交量越高,该价格所占的权重就越大.VWA ...

  8. plan-6.17周末

    喷完了自己,浑身舒爽. 搞个计划,最近要学东西,以提交博客为准,提交了才认为ok. 1.python的新书<<Fluent python>>不错,老的python资料已经满足不 ...

  9. 如何使用Inno Setup Compiler制作安装软件包

    工具/原料   Inno Setup Compiler汉化版软件 方法/步骤     启动Inno Setup Compiler汉化版软件.   选择创建新的空白脚本文件,按确定.   然后按下一步. ...

  10. logstash收集nginx日志

    (1)安装nginx 1.安装nginx yum install epel-release -y yum install nginx -y 2.修改日志文件格式为json #vim /etc/ngin ...