转自菠菜僵尸 http://www.cnblogs.com/shepherd2015/p/5848430.html

bundle adjustment原理(1)

那些光束平差的工具,比如SBA、SSBA之类的虽然好,然而例子和教程都不够多且不够详细,让初学者难以上手。

要传入的参数虽然有解释,然而却也不是十分清楚其含义,具体要怎么生成,生成为什么形式。

我在折腾了一段时间后也还是没成功,逼得我自己找这方面的资料学习,想要更了解bundle adjustment的原理。

想着干脆自己写一个简单的bundle框架练练手,就算写不成也将有助于让这些工具正常工作起来。

三维重建的最后一步是光束平差,又称bundle adjustment,本文介绍一下bundle adjustment的数学原理。

主要是参考 https://www.coursera.org/learn/robotics-perception/home/welcome 第4周里头的内容。

本文做一些数学上的推导以及将资料中的各种公式的含义细化。

自己在推导过程中发现了上述课程ppt中的一些细节地方的公式有错。

2016-09-07 10:24:33

除了上面的资料外,还参考了另一篇文献 “SBA: A Software Package for Generic Sparse Bundle Adjustment”,在bundle adjustment的wiki下以及MATLAB R2016a自带的bundleAdjustment函数中都参考了这篇文献。这篇文献和上述课程ppt中的变量设置略有不同,但大体框架是一样的。

整个 bundle adjustment 的目标是重投影误差最小,所以可以分为两个部分:

1,将某个误差函数的值最小化。这是一个最优化问题,用的是L-M算法。我已经写了一篇L-M算法的博客。

2,将重投影误差的误差函数的具体表达式写出来,套到上面的L-M算法里头去。

假设读者已经有一些最优化的知识。

先从只有1个点、1个相机讲起:

2个摄像机1个点的情况:

2个摄像机2个点的情况:

假如有3个摄像机,4个点,则J的大致情形如下,里头的含义模仿上面很容易搞清楚:

对于列来讲,前面3列对应着3个摄像机的变量,后面4列对应着4个点的变量。

那么函数f对变量p和x的偏导怎么求?只有用MATLAB的符号推导才能搞出来,手算非常容易出错

MATLAB代码如下:

被调用的函数sym_mat:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
function rtn = sym_mat(x,m,n)
% 生成符号矩阵,第一个参数是一个符号,后面两个参数是符号矩阵的尺寸
% 如果你想生成符号矩阵[x11 x12; x21 x22]只需输入sym_mat(x,2,2)
% 但事先要先声明符号x,用syms x
% 如果你只需要生成一维矩阵,sym_mat会生成一个列向量,如sym_mat(x,2);
% 例子:
% syms x;
% A = sym_mat(x,3,4) 返回一个3 x 4的符号矩阵
 
if nargin == 2
    for i=1:m
        rtn(i)=sym([inputname(1),num2str(i)]);
    end   
    rtn = rtn.';
elseif nargin == 3
    for i = 1:m
        for j = 1:n
            rtn(i,j) = sym([inputname(1),num2str(i),num2str(j)]);
        end
    end
end

符号推导部分:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
clear all;clc;close all;
 
syms P;
P = sym_mat(P,3,4);
P(3,4) = 1
P_var = symvar(P)
 
syms X;
X = [sym_mat(X,3);
    1]
X_var = symvar(X)
 
uvw = P*X;
 
u = uvw(1,:);
v = uvw(2,:);
w = uvw(3,:);
 
f = ...
    [u/w;
     v/w];
 
f_P = jacobian(f,P_var)
f_X = jacobian(f,X_var)
 
J = [f_P f_X]
sym_in_J = symvar(J)

f_P 代表函数 f 对 P  求导,得到 2 x 11 的矩阵

f_X 代表函数 f 对 X 求导,得到 2 x 3 的矩阵

结果很复杂,就不贴出来了。

具体计算矩阵J的值的时候,把变量替换成相应的值就可以了,MATLAB中有subs函数,如果用c++写,

则要自己写一个函数,把值传进去算矩阵J的值。

对于多点多相机的矩阵J,计算不同部分的 f_P 和 f_X,然后把它们组装成一个大的矩阵即可。

先写到这里。。。

bundle adjustment原理(1)转载的更多相关文章

  1. bundle adjustment原理(1)

    那些光束平差的工具,比如SBA.SSBA之类的虽然好,然而例子和教程都不够多且不够详细,让初学者难以上手. 要传入的参数虽然有解释,然而却也不是十分清楚其含义,具体要怎么生成,生成为什么形式. 我在折 ...

  2. bundle adjustment 玩具程序

    结合 bundle adjustment原理(1) 和 Levenberg-Marquardt 的 MATLAB 代码 两篇博客的成果,调用MATLAB R2016a中 bundleAdjustmen ...

  3. 机器人学 —— 机器人视觉(Bundle Adjustment)

    今天完成了机器人视觉的所有课程以及作业,确实是受益匪浅啊! 最后一个话题是Bundle Adjustment. 机器人视觉学中,最顶尖的方法. 1.基于非线性优化的相机位姿估计 之前已经在拟合一篇中, ...

  4. Bundle Adjustment光束平差法概述

    http://blog.csdn.net/abcjennifer/article/details/7588865 http://blog.csdn.net/ximenchuixuezijin/arti ...

  5. HashMap工作原理(转载)

    转载自:http://www.importnew.com/7099.html  HashMap的工作原理是近年来常见的Java面试题.几乎每个Java程序员都知道HashMap,都知道哪里要用Hash ...

  6. TCP/IP协议原理【转载】

    前述        各种L2数据网具有不同的通信协议与帧结构,其网络节点设备可以是各种类型的数据交换机(X.25.FR.Ethernet和ATM等分组交换机):而L3数据网(IP网或internet) ...

  7. Tomcat 系统架构与设计模式,第 1 部分: 工作原理(转载)

    简介: 这个分为两个部分的系列文章将研究 Apache Tomcat 的系统架构以及其运用的很多经典设计模式.本文是第 1 部分,将主要从 Tomcat 如何分发请求.如何处理多用户同时请求,还有它的 ...

  8. 从底层谈WebGIS 原理设计与实现(三):WebGIS前端地图显示之根据地理范围换算出瓦片行列号的原理(转载)

    从底层谈WebGIS 原理设计与实现(三):WebGIS前端地图显示之根据地理范围换算出瓦片行列号的原理 1.前言   在上一节中我们知道了屏幕上一像素等于实际中多少单位长度(米或经纬度)的换算方法, ...

  9. 梯度提升树(GBDT)原理小结(转载)

    在集成学习值Adaboost算法原理和代码小结(转载)中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boos ...

随机推荐

  1. ubuntu/linux系统中安装jdk以及eclipse(附图解详细步骤)

    1.首先得先下载JDK和eclipsejdk下载网址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-21 ...

  2. NO--10今天带大家回忆回忆“闭包”吧!

    对于‘闭包,我相信很多人都掉进过这个坑里,也相信很多人没能详细的理解这个问题,今天带大家再次走进闭包: 写这篇文章时的心情是十分忐忑的,因为对于我们今天的主角:闭包,很多小伙伴都写过关于它的文章,相信 ...

  3. OpenLDAP备份和恢复

    OpenLDAP中数据备份一般分为二种: 1)通过slapcat 指令进行备份 2)通过phpLDAPadmin控制台进行备份 备份方式1: 1)slapcat -v -l openldap-back ...

  4. MongoDB Chapter1:Introduction

    你是在防火墙后面吗? 为了继续本课程,您必须能够将计算机的传出请求发送到我们在MongoDB Atlas中设置的数据库服务器.这些服务器在Amazon AWS中的端口27017上运行. 请单击http ...

  5. Mysql 单表主从同步

    先配主从同步,后将主库表老数据传输到从库 说明:api-server的数据库为主,其他harbor为从 1.master 配置文件更改 [mysqld] log-bin = mysql-bin ser ...

  6. 集合set、map、list

    一.set 无序.可重复 public static void main(String[] args){ Set<String> set=new HashSet<String> ...

  7. 关于 WebView 知识点的详解

    什么是 WebView WebView 是手机中内置了一款高性能 webkit 内核浏览器,在 SDK 中封装的一个组件.没有提供地址栏和导航栏, WebView 只是单纯的展示一个网页界面.在开发中 ...

  8. Scrum立会报告+燃尽图(十一月十八日总第二十六次):功能开发与讨论贡献分配规则

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...

  9. asp.net登录状态验证

    文章:ASP.NET 登录验证 文章:ASP.NET MVC下判断用户登录和授权状态方法 文章:.net学习笔记---HttpHandle与HttpModule 第一篇文章,介绍了 1)早期的Base ...

  10. JavaScript DOM编程艺术学习笔记-第二章JavaScript语法

    一.JavaScript示例 <!DOCTYPE html> <html lang="en"> <head> <meta charset= ...