bundle adjustment原理(1)转载
转自菠菜僵尸 http://www.cnblogs.com/shepherd2015/p/5848430.html
bundle adjustment原理(1)
那些光束平差的工具,比如SBA、SSBA之类的虽然好,然而例子和教程都不够多且不够详细,让初学者难以上手。
要传入的参数虽然有解释,然而却也不是十分清楚其含义,具体要怎么生成,生成为什么形式。
我在折腾了一段时间后也还是没成功,逼得我自己找这方面的资料学习,想要更了解bundle adjustment的原理。
想着干脆自己写一个简单的bundle框架练练手,就算写不成也将有助于让这些工具正常工作起来。
三维重建的最后一步是光束平差,又称bundle adjustment,本文介绍一下bundle adjustment的数学原理。
主要是参考 https://www.coursera.org/learn/robotics-perception/home/welcome 第4周里头的内容。
本文做一些数学上的推导以及将资料中的各种公式的含义细化。
自己在推导过程中发现了上述课程ppt中的一些细节地方的公式有错。
2016-09-07 10:24:33
除了上面的资料外,还参考了另一篇文献 “SBA: A Software Package for Generic Sparse Bundle Adjustment”,在bundle adjustment的wiki下以及MATLAB R2016a自带的bundleAdjustment函数中都参考了这篇文献。这篇文献和上述课程ppt中的变量设置略有不同,但大体框架是一样的。
整个 bundle adjustment 的目标是重投影误差最小,所以可以分为两个部分:
1,将某个误差函数的值最小化。这是一个最优化问题,用的是L-M算法。我已经写了一篇L-M算法的博客。
2,将重投影误差的误差函数的具体表达式写出来,套到上面的L-M算法里头去。
假设读者已经有一些最优化的知识。
先从只有1个点、1个相机讲起:
2个摄像机1个点的情况:
2个摄像机2个点的情况:
假如有3个摄像机,4个点,则J的大致情形如下,里头的含义模仿上面很容易搞清楚:
对于列来讲,前面3列对应着3个摄像机的变量,后面4列对应着4个点的变量。
那么函数f对变量p和x的偏导怎么求?只有用MATLAB的符号推导才能搞出来,手算非常容易出错
MATLAB代码如下:
被调用的函数sym_mat:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
function rtn = sym_mat(x,m,n) % 生成符号矩阵,第一个参数是一个符号,后面两个参数是符号矩阵的尺寸 % 如果你想生成符号矩阵[x11 x12; x21 x22]只需输入sym_mat(x,2,2) % 但事先要先声明符号x,用syms x % 如果你只需要生成一维矩阵,sym_mat会生成一个列向量,如sym_mat(x,2); % 例子: % syms x; % A = sym_mat(x,3,4) 返回一个3 x 4的符号矩阵 if nargin == 2 for i =1:m rtn( i )=sym([ inputname (1), num2str ( i )]); end rtn = rtn.'; elseif nargin == 3 for i = 1:m for j = 1:n rtn( i , j ) = sym([ inputname (1), num2str ( i ), num2str ( j )]); end end end |
符号推导部分:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
clear all ; clc ; close all ; syms P; P = sym_mat(P,3,4); P(3,4) = 1 P_var = symvar (P) syms X; X = [sym_mat(X,3); 1] X_var = symvar (X) uvw = P*X; u = uvw(1,:); v = uvw(2,:); w = uvw(3,:); f = ... [u/w; v/w]; f_P = jacobian(f,P_var) f_X = jacobian(f,X_var) J = [f_P f_X] sym_in_J = symvar (J) |
f_P 代表函数 f 对 P 求导,得到 2 x 11 的矩阵
f_X 代表函数 f 对 X 求导,得到 2 x 3 的矩阵
结果很复杂,就不贴出来了。
具体计算矩阵J的值的时候,把变量替换成相应的值就可以了,MATLAB中有subs函数,如果用c++写,
则要自己写一个函数,把值传进去算矩阵J的值。
对于多点多相机的矩阵J,计算不同部分的 f_P 和 f_X,然后把它们组装成一个大的矩阵即可。
先写到这里。。。
bundle adjustment原理(1)转载的更多相关文章
- bundle adjustment原理(1)
那些光束平差的工具,比如SBA.SSBA之类的虽然好,然而例子和教程都不够多且不够详细,让初学者难以上手. 要传入的参数虽然有解释,然而却也不是十分清楚其含义,具体要怎么生成,生成为什么形式. 我在折 ...
- bundle adjustment 玩具程序
结合 bundle adjustment原理(1) 和 Levenberg-Marquardt 的 MATLAB 代码 两篇博客的成果,调用MATLAB R2016a中 bundleAdjustmen ...
- 机器人学 —— 机器人视觉(Bundle Adjustment)
今天完成了机器人视觉的所有课程以及作业,确实是受益匪浅啊! 最后一个话题是Bundle Adjustment. 机器人视觉学中,最顶尖的方法. 1.基于非线性优化的相机位姿估计 之前已经在拟合一篇中, ...
- Bundle Adjustment光束平差法概述
http://blog.csdn.net/abcjennifer/article/details/7588865 http://blog.csdn.net/ximenchuixuezijin/arti ...
- HashMap工作原理(转载)
转载自:http://www.importnew.com/7099.html HashMap的工作原理是近年来常见的Java面试题.几乎每个Java程序员都知道HashMap,都知道哪里要用Hash ...
- TCP/IP协议原理【转载】
前述 各种L2数据网具有不同的通信协议与帧结构,其网络节点设备可以是各种类型的数据交换机(X.25.FR.Ethernet和ATM等分组交换机):而L3数据网(IP网或internet) ...
- Tomcat 系统架构与设计模式,第 1 部分: 工作原理(转载)
简介: 这个分为两个部分的系列文章将研究 Apache Tomcat 的系统架构以及其运用的很多经典设计模式.本文是第 1 部分,将主要从 Tomcat 如何分发请求.如何处理多用户同时请求,还有它的 ...
- 从底层谈WebGIS 原理设计与实现(三):WebGIS前端地图显示之根据地理范围换算出瓦片行列号的原理(转载)
从底层谈WebGIS 原理设计与实现(三):WebGIS前端地图显示之根据地理范围换算出瓦片行列号的原理 1.前言 在上一节中我们知道了屏幕上一像素等于实际中多少单位长度(米或经纬度)的换算方法, ...
- 梯度提升树(GBDT)原理小结(转载)
在集成学习值Adaboost算法原理和代码小结(转载)中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boos ...
随机推荐
- 三点须知:当我们在开发过程中需要用到分布式缓存Redis的时候
当我们在开发过程中需要用到分布式缓存Redis的时候,我们首先要明白缓存在系统中用来做什么? 1. 少量数据存储,高速读写访问.通过数据全部in-momery 的方式来保证高速访问,同时提供数据落地的 ...
- 使用JS验证文件类型
项目中涉及到这一需求,在此贴出代码分享给大家, 有2中方式,一种是input中使用accept 方式 一种是使用js正则表达式判断,个人推荐使用js正则表达式,因为accept 有的浏览器并不支持,而 ...
- 【ML系列】简单的二元分类——Logistic回归
对于了解机器学习中二元分类问题的来源与分析,我认为王树义老师这篇文章讲的非常好,通俗且易懂: http://blog.sciencenet.cn/blog-377709-1121098.html 但王 ...
- 用 Python 构建一个极小的区块链
虽然有些人认为区块链是一个早晚会出现问题的解决方案,但是毫无疑问,这个创新技术是一个计算机技术上的奇迹.那么,究竟什么是区块链呢? 区块链 以比特币(Bitcoin)或其它加密货币按时间顺序公开地记录 ...
- 详解Python中的下划线
本文将讨论Python中下划线(_)字符的使用方法.我们将会看到,正如Python中的很多事情,下划线的不同用法大多数(并非所有)只是常用惯例而已. 单下划线(_) 通常情况下,会在以下3种场景中使用 ...
- SQLSERVER 根据身份证号码 往出生年月日 赋值
update CREW_SailorInfo set DT_DOB= ( case then , ) then , ) else null end) 注:此问题仅供参考 如有疑问 请加QQ群18153 ...
- 软件工程-东北师大站-第四次作业PSP
1.本周PSP 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图 4.本周PSP饼状图
- 学霸系统UI部分功能规格说明书
发布人员:软件工程实践小队 发布内容:学霸系统UI部分功能规格说明书 版本:学霸V1.1版本 ◆Part 1:引言 1.1目的 本功能规格说明书的目的在于明确 ...
- SDN练习一
SDN练习第一题 题目描述 实现网络拓扑: 具体要求: 南向接口采用OpenFlow 协议. 可查看网络的拓扑信息视图. H1.H2.H3.H4 任意两两可互通. 实现思路 利用mininet可视化图 ...
- Java微笔记(6)