【BZOJ】1016: [JSOI2008]最小生成树计数(kruskal+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1016
想也想不到QAQ
首先想不到的是:题目有说,具有相同权值的边不会超过10条。
其次:老是去想组合计数怎么搞。。。。。。。于是最sb的暴力都不会了。。
所以这题暴力搞就行了orz
依次加边,每一种边的方案数乘起来就是方案了。
注意并查集不能路径压缩,否则在计数的时候会waQAQ因为并查集的路径压缩是不可逆的QAQ
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=105, M=1005, MD=31011;
int n, m, cnt, p[N], ans=1, sum;
struct dat { int x, y, w; }e[M], a[M];
inline const bool cmp(const dat &a, const dat &b) { return a.w<b.w; }
inline const int ifind(const int &x) { return x==p[x]?x:ifind(p[x]); } void dfs(int now, int s, const int &x) {
if(now>a[x].y) {
if(s==a[x].w) ++sum;
return;
}
dfs(now+1, s, x);
int fx=ifind(e[now].x), fy=ifind(e[now].y);
if(fx!=fy) { p[fx]=fy; dfs(now+1, s+1, x); p[fx]=fx; p[fy]=fy; }
} int main() {
read(n); read(m);
for1(i, 1, m) read(e[i].x), read(e[i].y), read(e[i].w);
for1(i, 1, n) p[i]=i;
sort(e+1, e+1+m, cmp);
int ed=0;
for1(i, 1, m) {
if(e[i].w!=e[i-1].w) a[++cnt].x=i, a[cnt-1].y=i-1;
int fx=ifind(e[i].x), fy=ifind(e[i].y);
if(fx!=fy) {
p[fx]=fy;
++a[cnt].w;
++ed;
}
}
if(ed!=n-1) { puts("0"); return 0; }
a[cnt].y=m;
for1(i, 1, n) p[i]=i;
for1(i, 1, cnt) {
sum=0;
dfs(a[i].x, 0, i);
ans=(ans*sum)%MD;
for1(j, a[i].x, a[i].y) {
int fx=ifind(e[j].x), fy=ifind(e[j].y);
if(fx!=fy) p[fx]=fy;
}
}
print(ans); return 0;
}
Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。
Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,000。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。
Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
Sample Output
HINT
Source
【BZOJ】1016: [JSOI2008]最小生成树计数(kruskal+特殊的技巧)的更多相关文章
- BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...
- [BZOJ]1016 JSOI2008 最小生成树计数
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...
- [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】
题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...
- BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)
题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...
- bzoj 1016 [JSOI2008]最小生成树计数——matrix tree(相同权值的边为阶段缩点)(码力)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 就是缩点,每次相同权值的边构成的联通块求一下matrix tree.注意gauss里的 ...
- bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】
有一个性质就是组成最小生成树总边权值的若干边权总是相等的 这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的 所以先随便求一个最小生成树,把每段的入选边数记录下来 然后对于 ...
- BZOJ 1016 [JSOI2008]最小生成树计数 ——Matrix-Tree定理
考虑从小往大加边,然后把所有联通块的生成树个数计算出来. 然后把他们缩成一个点,继续添加下一组. 最后乘法原理即可. 写起来很恶心 #include <queue> #include &l ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- 1016: [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 6200 Solved: 2518[Submit][St ...
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等 就是说如果一种方案中权值为1的边有n条 ...
随机推荐
- 开发移动 APP 时,你应注意这 5 个细节
智能手机的普及带动了大批移动应用的诞生,这些应用能够帮助人们解决日常生活所面临的种种问题.Smart Insights 发表的一份报告指出,移动应用占人们使用智能手机总时间的89%,因此,为了确保你所 ...
- vnc/route/ifconfig 配置
重启网卡的方法: 1 network 利用root帐户 # service network restart ############################################## ...
- HttpClient设置超时(转)
HttpClient 4.5版本设置连接超时时间-CloseableHttpClient设置Timeout(区别于4.3.2) HttpClient升级到4.5版本后,API有很多变化,HttpCl ...
- Direct X和OpenGL是什么及有何区别
摘自:http://mtoou.info/directx-opengl-shenme/ 提起图形和显卡,尤其是玩电脑游戏的时候(通常是安装时)很多人是不是立刻就想起了一个名词叫做Direct X,通常 ...
- Python-多线程学习总结
我们在做软件开发的时候很多要用到多线程技术.例如如果做一个下载软件象flashget就要用到.象在线视频工具realplayer也要用到因为要同时下载media stream还要播放.其实例子是很多的 ...
- mysql的rand函数
项目中需要动态随机生成一些固定位数的随机数,如8位,5位等. 之前看到的写法是这样 ROUND(ROUND(RAND(),5)*100000) 这样写不太准确,有几率出现4位的情况,Rand() 函数 ...
- Python3 isidentifier() 方法
描述 Python3 isidentifier() 方法用于判断字符串是否是有效的 Python 标识符,可用来判断变量名是否合法. 语法 isidentifier() 方法语法: S.isident ...
- SortedDictionary<TKey,TValue>正序与反序排序及Dicttionary相关
SortedDictionary<TKey,TValue>能对字典排序 using System; using System.Collections.Generic; using Syst ...
- Angularjs $http.post
$http.post 采用postJSON方式发送数据到后台. 如果不需要发送json格式数据,序列化成&连接的字符串,形如:"a=1&b=2",最终完整的前端解决 ...
- linux kill 关闭进程命令
杀死进程最安全的方法是单纯使用kill命令,不加修饰符,不带标志. 首先使用ps -ef命令确定要杀死进程的PID,然后输入以下命令: # kill -pid 注释:标准的kill命令通常都能达到目的 ...