【BZOJ】1016: [JSOI2008]最小生成树计数(kruskal+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1016
想也想不到QAQ
首先想不到的是:题目有说,具有相同权值的边不会超过10条。
其次:老是去想组合计数怎么搞。。。。。。。于是最sb的暴力都不会了。。
所以这题暴力搞就行了orz
依次加边,每一种边的方案数乘起来就是方案了。
注意并查集不能路径压缩,否则在计数的时候会waQAQ因为并查集的路径压缩是不可逆的QAQ
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=105, M=1005, MD=31011;
int n, m, cnt, p[N], ans=1, sum;
struct dat { int x, y, w; }e[M], a[M];
inline const bool cmp(const dat &a, const dat &b) { return a.w<b.w; }
inline const int ifind(const int &x) { return x==p[x]?x:ifind(p[x]); } void dfs(int now, int s, const int &x) {
if(now>a[x].y) {
if(s==a[x].w) ++sum;
return;
}
dfs(now+1, s, x);
int fx=ifind(e[now].x), fy=ifind(e[now].y);
if(fx!=fy) { p[fx]=fy; dfs(now+1, s+1, x); p[fx]=fx; p[fy]=fy; }
} int main() {
read(n); read(m);
for1(i, 1, m) read(e[i].x), read(e[i].y), read(e[i].w);
for1(i, 1, n) p[i]=i;
sort(e+1, e+1+m, cmp);
int ed=0;
for1(i, 1, m) {
if(e[i].w!=e[i-1].w) a[++cnt].x=i, a[cnt-1].y=i-1;
int fx=ifind(e[i].x), fy=ifind(e[i].y);
if(fx!=fy) {
p[fx]=fy;
++a[cnt].w;
++ed;
}
}
if(ed!=n-1) { puts("0"); return 0; }
a[cnt].y=m;
for1(i, 1, n) p[i]=i;
for1(i, 1, cnt) {
sum=0;
dfs(a[i].x, 0, i);
ans=(ans*sum)%MD;
for1(j, a[i].x, a[i].y) {
int fx=ifind(e[j].x), fy=ifind(e[j].y);
if(fx!=fy) p[fx]=fy;
}
}
print(ans); return 0;
}
Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。
Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,000。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。
Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
Sample Output
HINT
Source
【BZOJ】1016: [JSOI2008]最小生成树计数(kruskal+特殊的技巧)的更多相关文章
- BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...
- [BZOJ]1016 JSOI2008 最小生成树计数
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...
- [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】
题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...
- BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)
题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...
- bzoj 1016 [JSOI2008]最小生成树计数——matrix tree(相同权值的边为阶段缩点)(码力)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 就是缩点,每次相同权值的边构成的联通块求一下matrix tree.注意gauss里的 ...
- bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】
有一个性质就是组成最小生成树总边权值的若干边权总是相等的 这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的 所以先随便求一个最小生成树,把每段的入选边数记录下来 然后对于 ...
- BZOJ 1016 [JSOI2008]最小生成树计数 ——Matrix-Tree定理
考虑从小往大加边,然后把所有联通块的生成树个数计算出来. 然后把他们缩成一个点,继续添加下一组. 最后乘法原理即可. 写起来很恶心 #include <queue> #include &l ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- 1016: [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 6200 Solved: 2518[Submit][St ...
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等 就是说如果一种方案中权值为1的边有n条 ...
随机推荐
- MySQL InnoDB简介
从MySQL 5.5版本开始InnoDB已经是默认的表存储引擎 InnoDB 1:完全支持ACID 2:支持行级锁 3:支持MVCC 4:支持外键 MySQL 5.1版本 MySQL 5.1版本之前, ...
- js正则表达式test方法、exec方法与字符串search方法区别
1.正则表达式test方法 test() 方法用于检测一个字符串是否匹配某个模式 返回值: 如果字符串 string 中含有与 RegExpObject 匹配的文本,则返回 true,否则返回 fal ...
- 错误:因为相同类型的其他实体已具有相同的主键值。在使用 "Attach" 方法或者将实体的状态设置为 "Unchanged" 或 "Modified" 解决方法
在更新一个实体类的时候可能会有预先有一次查询或者其它操作,我们这样用目的是为了与提交的数据做一个比较之类的东西,如果先查询再对此类进行SaveChanges就会出错. 我们只要用AsNoTrackin ...
- C# Dictionary通过value获取对应的key值[转发]
1:最直白的循环遍历方法,可以分为遍历key--value键值对以及所有的key两种表现形式 2:用Linq的方式去查询(当然了这里要添加对应的命名空间 using System.Linq) 如下为一 ...
- Java多线程具体解释
Java多线程具体解释 多线程简单介绍 概述 多线程(multithreading).是指从软件或者硬件上实现多个线程并发运行的技术.具有多线程能力的计算机因有硬件支持而可以在同一时间运行多于一个线程 ...
- 常用Jar包下载
Jackson包下载 :https://yunpan.cn/cBdPGeIESZ4jE 访问密码 36f7
- 【phpstorm】破解安装
1.使用前修改C:\windows\system32\Driver\hosts文件,将“0.0.0.0 account.jetbrains.com”添加到hosts文件中. 2. 浏览器打开 http ...
- C# 基础: new 和 overrider 的区别
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- C#:将空间数据加载到树视图控件
自己 整理了 下 代码 测试了下 还行... #region 操作树视图控件 /// <summary> /// 自定义需要的类型 /// </summary> enum Da ...
- blender, 旋转和平移视图
旋转视图:MMB(鼠标中键) 平移视图:shift+MMB