题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685

思路:想了好久,终于想明白了,懒得写了,直接copy大牛的思路了,写的非常好!

做法是先求一次最大匹配设为cnt,那么左边有n-cnt个王子还未匹配,右边有m-cnt个公主还未匹配,因此我们将左侧增加m-cnt个虚拟王子,虚拟王子与右边所有公主连边;右边增加n-cnt个虚拟公主,虚拟公主与左边所有王子连边,这样我们就得到一个两边各有M=n+m-cnt的二分图,且该二分图是一个完美匹配。也就是每个王子都有一个匹配的公主。现在,我们将每个王子匹配的公主向该王子喜欢的公主连边(建一个新图g),然后求g的强连通分量。那么与每个王子之前匹配的公主在一个强连通分量里的公主都可以作为该王子的匹配使得最大匹配不变。为什么是这样的呢?设王子i之前的匹配为p[i],现在为王子i选择一个新的公主j,那么我们若能为p[i]重新找到一个王子k,那么实质上就是找到另一个王子互换两个两个王子喜欢的公主。因此两公主若在一个强连通分量里,那么王子由之前的匹配公主A选择公主B时,A也能找到另一个匹配,因为B能够通过某些路径到达A,等价于这条环上所有王子的匹配都后移一个人而已。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<vector>
using namespace std;
#define MAXN 1111 int n,m,N,cnt;
bool map[MAXN][MAXN];
bool mark[MAXN];
int ly[MAXN];
int lx[MAXN]; int dfs(int u,int m)
{
for(int v=;v<=m;v++){
if(map[u][v]&&!mark[v]){
mark[v]=true;
if(ly[v]==-||dfs(ly[v],m)){
ly[v]=u;
lx[u]=v;
return ;
}
}
}
return ;
} int MaxMatch(int n,int m)
{
memset(ly,-,sizeof(ly));
memset(lx,-,sizeof(lx));
int ans=;
for(int i=;i<=n;i++){
memset(mark,false,sizeof(mark));
ans+=dfs(i,m);
}
return ans;
} vector<vector<int> >g;
vector<vector<int> >ans; int dfn[MAXN],low[MAXN];
int color[MAXN],_count;
stack<int>S; void Tarjan(int u)
{
low[u]=dfn[u]=++cnt;
mark[u]=true;
S.push(u);
for(int i=;i<g[u].size();i++){
int v=g[u][i];
if(dfn[v]==){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(mark[v]){
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
_count++;
int x;
do{
x=S.top();
S.pop();
mark[x]=false;
color[x]=_count;
}while(x!=u);
}
} int main()
{
int _case,k,x,t=;
scanf("%d",&_case);
while(_case--){
scanf("%d%d",&n,&m);
memset(map,false,sizeof(map));
for(int i=;i<=n;i++){
scanf("%d",&k);
while(k--){
scanf("%d",&x);
map[i][x]=true;
}
}
cnt=MaxMatch(n,m);
N=n+m-cnt;
for(int i=n+;i<=N;i++)
for(int j=;j<=N;j++)
map[i][j]=true;
for(int i=m+;i<=N;i++)
for(int j=;j<=N;j++)
map[j][i]=true;
MaxMatch(N,N);
g.clear();
g.resize(N+);
ans.clear();
ans.resize(N+);
for(int i=;i<=N;i++){
for(int j=;j<=N;j++){
if(lx[i]!=j&&map[i][j]){
g[lx[i]].push_back(j);
}
}
}
memset(dfn,,sizeof(dfn));
memset(mark,false,sizeof(mark));
_count=cnt=;
for(int i=;i<=N;i++)
if(dfn[i]==)Tarjan(i);
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(map[i][j]&&color[lx[i]]==color[j]){
ans[i].push_back(j);
}
}
}
printf("Case #%d:\n",t++);
for(int i=;i<=n;i++){
printf("%d",(int)ans[i].size());
for(int j=;j<ans[i].size();j++){
printf(" %d",ans[i][j]);
}
puts("");
}
}
return ;
}

hdu 4685(匹配+强连通分量)的更多相关文章

  1. HDU 3639 Hawk-and-Chicken(强连通分量+缩点)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u013480600/article/details/32140501 HDU 3639 Hawk-a ...

  2. poj1904 二分图匹配+强连通分量

    http://poj.org/problem?id=1904 Description Once upon a time there lived a king and he had N sons. An ...

  3. hdu 4685 二分匹配+强连通分量

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4685 题解: 这一题是poj 1904的加强版,poj 1904王子和公主的人数是一样多的,并且给出 ...

  4. UESTC 898 方老师和缘分 --二分图匹配+强连通分量

    这题原来以为是某种匹配问题,后来好像说是强连通的问题. 做法:建图,每个方老师和它想要的缘分之间连一条有向边,然后,在给出的初始匹配中反向建边,即如果第i个方老师现在找到的是缘分u,则建边u-> ...

  5. H - Prince and Princess - HDU 4685(二分匹配+强连通分量)

    题意:有N个王子M个公主,王子喜欢一些公主,而且只能是王子喜欢的人,他们才可以结婚,现在让他们尽可能多的结婚的前提下找出来每个王子都可以和谁结婚. 分析:先求出来他们的最大匹配,因为给的数据未必是完备 ...

  6. Luogu3731 HAOI2017新型城市化(二分图匹配+强连通分量)

    将未建立贸易关系看成连一条边,那么这显然是个二分图.最大城市群即最大独立集,也即n-最大匹配.现在要求的就是删哪些边会使最大匹配减少,也即求哪些边一定在最大匹配中. 首先范围有点大,当然是跑个dini ...

  7. hdu 4685(强连通分量+二分图的完美匹配)

    传送门:Problem 4685 https://www.cnblogs.com/violet-acmer/p/9739990.html 参考资料: [1]:二分图的最大匹配.完美匹配和匈牙利算法 [ ...

  8. HDU 4685 Prince and Princess(二分图+强连通分量)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685 题意:给出n个王子和m个公主.每个王子有一些自己喜欢的公主可以匹配.设最大匹配为M.那么对于每个 ...

  9. hdu 4685(强连通分量+二分图)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685 题意:n个王子和m个公主,王子只能和他喜欢的公主结婚,公主可以和所有的王子结婚,输出所有王子可能 ...

随机推荐

  1. python笔记-列表和元组

    列表和元组: -可以将列表和元组当成普通的数组 -列表和元组可以保存任意类型的python对象 -通过从0开始的数字索引访问元素 -列表和元组可以存储不同类型的对象 列表和元组的区别: -列表元素使用 ...

  2. Android自己定义截屏功能,相似QQ截屏

    由于公司业务需求 须要对一个屏幕进行截屏.但自带的截屏功能是远远不够项目的功能需求 ,我们是做一个画板软件 .须要的像QQ那样截屏之后 ,能够看到我们自己定义的工具.有画笔,button等等 .and ...

  3. screen常用命令

    1. 背景 由于经常使用ssh登录实验室的服务器训练神经网络, 而一些复杂的神经网络模型需要长时间训练,在此期间,如果出现网络等原因出现链接中断的话,服务器的进程也会被杀死,之前的一切半途而废.利用s ...

  4. EF4.1 企业架构模式 自动映射数据表(转载)

    在讲解之前,先来看看解决方案的架构: 1.在Nop.Core下的Domain里建立一个实体Category:2.在Nop.Data下的Mapping\Catatog\下建立一个数据表映射Categor ...

  5. 使用SOCKET实现TCP/IP协议的通讯

    一.原理: 首先要理解基本的原理,2台电脑间实现TCP通讯,首先要建立起连接,在这里要提到服务器端与客户端,两个的区别通俗讲就是主动与被动的关系,两个人对话,肯定是先有人先发起会话,要不然谁都不讲,谈 ...

  6. PHP 5.3以上版本推荐使用mysqlnd驱动

    什么是mysqlnd?mysqldnd(MySQL native driver)是由PHP源码提供的mysql驱动连接代码.它的目的是代替旧的libmysql驱动. 传统的安装php的方式中,我们在编 ...

  7. [Jobdu] 题目1507:不用加减乘除做加法

    题目描述: 写一个函数,求两个整数之和,要求在函数体内不得使用+.-.*./四则运算符号. 输入: 输入可能包含多个测试样例.对于每个测试案例,输入为两个整数m和n(1<=m,n<=100 ...

  8. CUGBACM Codeforces Tranning 3 题解

    链接:http://acm.hust.edu.cn/vjudge/contest/view.action? cid=62515#overview 描写叙述:第三场CF训练了.这次做的挺搞笑的,我记得这 ...

  9. atitit.判断时间重叠方法总结 java c++ c#.net js php

    atitit.判断时间重叠方法总结 java c++ c#.net  js php 1. 判断时间重叠具体流程思路 1 2. 重叠算法 实际上就是日期集合跟个时间集合的的交集(乘法算法) 1 3. 代 ...

  10. java 高精度 四则运算

    java的大数处理对于ACM中的大数来说,相当的简单啊: 整数的运算   BigInteger 小数的运算   BigDecimal 导入类: import java.util.Scanner; im ...