3561: DZY Loves Math VI

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 205  Solved: 141

Description

给定正整数n,m。求

Input

一行两个整数n,m。

Output

一个整数,为答案模1000000007后的值。

Sample Input

5 4

Sample Output

424

HINT

数据规模:

1<=n,m<=500000,共有3组数据。

Source

【分析】

  式子已经推出来了,然而后面。。。我觉得我学了假的数论。。。

  好吧,推式子。。

  下面省了一些

  $$\sum_{i=1}^{n}\sum_{j=1}^{m} lcm(i,j)^{gcd(i,j)}$$

  $$=\sum_{i=1}^{n}\sum_{j=1}^{m} {[\dfrac{i*j}{gcd(i,j)}]}^{gcd(i,j)}$$

  $$=\sum_{d=1}^{min(n,m)}d^d \sum_{i'=1}^{n/d} \sum_{j'=1}^{m/d} (i'*j')^d [gcd(i',j')==1]$$

  $$=\sum_{d=1}^{min(n,m)}d^d\sum_{d'=1}^{min(n,m)/d} \mu(d')\sum_{i'=1}^{\dfrac{n}{d*d'}}(i'*d')^d*\sum_{j'=1}^{\dfrac{n}{d*d'}}(j'*d')^d$$

$$如果你觉得上面难看就看下面吧$$

  
$$如果你觉得下面难看就看上面吧$$

 

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Mod 1000000007
#define Maxn 500010
#define LL long long int mymin(int x,int y) {return x<y?x:y;} int mu[Maxn],pri[Maxn],pl;
bool vis[Maxn]; LL qpow(LL x,int b)
{
LL ans=;
while(b)
{
if(b&) ans=(ans*x)%Mod;
x=(x*x)%Mod;
b>>=;
}
return ans;
} void init()
{
pl=;
memset(vis,,sizeof(vis));
mu[]=;
for(int i=;i<=Maxn-;i++)
{
if(!vis[i]) pri[++pl]=i,mu[i]=-;
for(int j=;j<=pl;j++)
{
if(i*pri[j]>Maxn-) break;
vis[i*pri[j]]=;
if(i%pri[j]==) mu[i*pri[j]]=;
else mu[i*pri[j]]=mu[i]*mu[pri[j]];
if(i%pri[j]==) break;
}
}
} int a[Maxn],sum[Maxn];
void ffind(int n,int m)
{
int ans=;
if(m>n) swap(m,n);
for(int i=;i<=n;i++) a[i]=;
for(int i=;i<=m;i++)
{
int x=qpow(i,i),y=;
for(int j=;j*i<=n;j++)
{
a[j]=(LL)a[j]*j%Mod;
sum[j]=(sum[j-]+a[j])%Mod;
}
for (int j=;j*i<=m;j++)
y=((LL)a[j]*a[j]%Mod*sum[m/i/j]%Mod*sum[n/i/j]%Mod*mu[j]+y+Mod)%Mod;
ans=(ans+(LL)x*y%Mod)%Mod;
}
printf("%d\n",ans);
} int main()
{
int n,m;
init();
scanf("%d%d",&n,&m);
ffind(n,m);
return ;
}

发现这个lych_cys大神的代码挺简短的,而且好像挺快的,LL都是算的时候才用。。

2017-03-23 21:56:35

【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)的更多相关文章

  1. BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析

    推到了一个推不下去的形式,然后就不会了 ~ 看题解后傻了:我推的是对的,推不下去是因为不需要再推了. 复杂度看似很大,但其实是均摊 $O(n)$ 的,看来分析复杂度也是一个能力啊 ~ code: #i ...

  2. 【BZOJ 3561】 DZY Loves Math VI

    题目: 给定正整数n,m.求   题解: 水题有益身心健康.(博客园的辣鸡数学公式) 其实到这我想强上伯努利数,然后发现$n^2$的伯努利数,emmmmmm 发现这个式子可以算时间复杂度,emmmmm ...

  3. 【bzoj3561】DZY Loves Math VI 莫比乌斯反演

    题目描述 给定正整数n,m.求   输入 一行两个整数n,m. 输出 一个整数,为答案模1000000007后的值. 样例输入 5 4 样例输出 424 题解 莫比乌斯反演 (为了方便,以下公式默认$ ...

  4. BZOJ3561 DZY Loves Math VI 莫比乌斯反演

    传送门 看到\(gcd\)相关先推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^M (lcm(i ...

  5. BZOJ 3561 DZY Loves Math VI

    BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...

  6. 【BZOJ3561】DZY Loves Math VI (数论)

    [BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...

  7. 【BZOJ3309】DZY Loves Math(莫比乌斯反演)

    [BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...

  8. 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化

    3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...

  9. [BZOJ3561] DZY Loves Math VI

    (14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www ...

随机推荐

  1. MappedByteBuffer以及ByteBufer的底层原理

    最近在用java中的ByteBuffer,一直不明所以,尤其是对MappedByteBuffer使用的内存映射这个概念云里雾里. 于是首先补了物理内存.虚拟内存.页面文件.交换区的只是:小科普——物理 ...

  2. TED_Topic1:Why we need to rethink capitalism

    Topic 1:Why we need to rethink capitalism By Paul Tudor Jones II # Background about our speaker      ...

  3. virtual和abstract的区别和联系

    壹. 相同 他们有些相似.有些场景用哪个都行!   1. 修饰父类.让子类重写 virtual和abstract都是用来修饰父类的,通过覆盖父类的定义,让子类重新定义. 2. 都用必须public 如 ...

  4. 一文掌握关于Java数据结构所有知识点(欢迎一起完善)

    在我们学习Java的时候,很多人会面临我不知道继续学什么或者面试会问什么的尴尬情况(我本人之前就很迷茫).所以,我决定通过这个开源平台来帮助一些有需要的人,通过下面的内容,你会掌握系统的Java学习以 ...

  5. thinkphp 5.0 代码执行漏洞

    https://github.com/vulhub/vulhub/blob/master/thinkphp/5-rce docker-compose -f /home/root/compose.yml ...

  6. 一款线程安全、基本功能齐全的STL

    MiniSTL 目前正在完成一个STL,主要想通过该项目锻炼C++编程.模板编程.熟悉STL.锻炼数据结构和算法能力. 项目的目标是实现STL的几大构件+线程安全.项目过程中主要参考SGI STL源码 ...

  7. nvidia tx1使用记录--基本环境搭建

    前言 之前有专门写过一篇nvidia tk1使用记录--基本环境搭建,本以为自己有过tk1的经验后,在tx1上搭建和它一样的环境会轻车熟路,结果却是在nvidia tx1上花的时间居然比tk1还多.我 ...

  8. 阻止MyEclipse启动项目时自动跳转的debug视图

    启动web项目时,习惯使用debug方式启动,但此时会自动跳转到debug视图,很不习惯. 通过修改首选项配置,可以禁止跳转

  9. 一张图总结html5新特性

  10. 中文chrome font-size 10px,11px,12px,rem只为12px解决办法

    问题来源: html { font-size: 10px; -webkit-tap-highlight-color: rgba(0, 0, 0, 0); } .form-signin { max-wi ...