DP 题集 2
- String painter 先区间 DP,\(dp[l][r]\) 表示把一个空串涂成 \(t[l,r]\) 这个子串的最小花费。再考虑 \(s\) 字符串,\(f[i]\) 表示前 \(i\) 个字符相同时的最小花费。
- Parade 单调队列优化 DP。
- Free Goodies 对于第一个人,她选择的顺序是固定的。第二个人想要选到全局最优,那么有 \(dp[i][j]\) 表示到第 \(i\) 个数时,选了 \(j\) 个数时的最大值,顺便再记录下第一个人选的最大值。
- Help Bubu 状态压缩 DP,有 \(dp[i][j][k][s]\) 表示到第 \(i\) 本书时,拿了 \(j\) 个出来,最后一本书的高度为 \(k\) ,书的高度的状态是 \(s\) 的最小混乱程度,计算最终答案时,对于拿出来的书,只有状态中没有对应的高度才会造成混乱度增加。
- Caves 树形 DP ,距离值太大,但是点数很小,考虑 \(dp[i][j][k]\) 表示以 \(i\) 为根结点的子树 ,从 \(i\) 出发走了 \(j\) 个点,是否 ( \(k=0\ or\ 1\) ) 回到根结点的最短距离。
- Masud Rana 状态压缩 DP ,期望 DP 。\(dp[S]\) ,\(S\) 转化成二进制后 0/1 表示某个点是否被走过,那么显然走过点都在一个联通块里,考虑下一次走到一个新的点(扩展联通块),还是仍然在联通块里,累加期望即可。
- Fund Management 状态压缩 DP 。首先,仅仅记录有哪些股票是不够的,考虑手数,不好设计状态。可以预处理状态转移,即从一种股票组合是否能通过买或卖到另一种股票组合(这样就不用管有哪些股票,有几手股票了)。
- Evacuation Plan 先分别排序,然后有 \(dp[i][j]\) 表示前 \(i\) 个人分配到前 \(j\) 个避难所的最小花费。滚动数组优化,记录方案可以用 bool 类型的数组。
- Exclusive Access 2 经典模型:图的色数。 给一个无向图 \(G\) ,把图中的结点染成尽量少的颜色,使得相邻节点颜色不同,可以用状态压缩 DP 求解。回到这题,实际上是给出一个无向图,要求给无向边定向,使其无环且最长路最短。考虑给结点分层,要求每一层的结点之间没有边,那么最小层数即为图中的最长路加1 ,对于具体的边的定向,编号小的层中的结点的向编号大的层中的结点连边。分层实际就变成了图的色数问题,过程中记录下分层的方案即可。
- Mountain Road \(dp[i][j][k]\) 表示最后一个走的车是 \(k\) 这边的,\(A\) 边的车走了 \(i\) 辆,\(B\) 边的车走了 \(j\) 辆时的最小花费。
- Interstellar Travel 利用分块的思想优化,\(dp[d][i][j]\) 表示 \(i\) 到 \(j\) 经过 \(d\) 条边的最短距离,\(f[d][i][j]\) 表示 \(i\) 到 \(j\) 经过 \(100*d\) 条边的最短距离,对于询问边数 \(d\),显然可以表示成 $ ( d%100, d/100) $ ,因为求的是至少 \(d\) 条边,所以再预处理下, \(g[d][i][j]\) 表示 \(i\) 到 \(j\) 的经过了至少 \(d\) 条边的最短距离。对于询问,枚举中间点 \(k\) ,$ min(f[d/100][s][k] + g[d%100][k][t]) $ 即为答案。
- Random Sequence \(dp[i][j][k][p]\) 表示到第 \(i\) 个数,\(j=gcd(a[i-2], a[i-1], a[i])\), \(k=gcd(a[i-1],a[i])\), \(p=a[i]\) 时对答案的贡献。实际合法的状态很少,预处理下即可。
- Hills And Valleys 预处理以某点开始或结尾的最长上升子序列长度,然后枚举要翻转的区间的值域 \([l,r]\) , 在这个约束下转移,实际上我们要确定的就是某个下降的子序列的起点和终点,转移的时候记录下起点,对于每个数都判断下是否可能为终点即可。
- Shoot Game 对于每个线段,向端点射击显然最优,再就是对于一个区间中的所有线段,最大权值的线段先射击一定不坏,考虑区间 DP ,将射击指向的方向按极角排序,区间 DP 的时候,对于一段区间,只需要考虑完全包含在这个区间中的线段。
- Histogram Coloring 计数 DP ,递归实现很方便 。
- Moving to Nuremberg 树形 DP 。经典模型,统计树中所有结点到某个结点的距离,本题中,可以把每年要去某个点的次数看作这个结点的 \(size\)。
- Binary Strings 矩阵快速幂优化 DP 。等比矩阵求和。
- 度度熊看球赛 应该算是比较经典的 计数 DP 了。\(dp[i][j]\) 表示前 \(2*i\) 个人,有 \(j\) 对情侣是挨着坐的方案数,考虑新来的两个人,要么坐一起,要么分开坐,要么拆散别人,要么不拆散。预处理下即可。
- Dinner Bet 概率 DP 。\(dp[i][j][k]\) 表示独属于第一个人的数字已经填了 \(i\) 个,独属于第二个人的数字已经填了 \(j\) 个,两人共有的数字填了 \(k\) 个时的还要进行的游戏轮数的期望。记忆化搜索,暴力枚举每次选 \(d\) 个数字的组合,然后转移即可。在转移的时候要考虑一个对状态有影响的数字都没选到的情况,\(dp = p0 * dp + p1 * dp1 + p2 * dp2 ....\) 可以通过移项变换成 $ dp = \frac{p1 * dp1 + p2 * dp2 + ....}{1 - p0} $ 。
- 公共子序列 考虑随机生成的数列有什么性质,相同的数必然很少,考虑经典的 LCS 是怎么转移的,只有所有序列中有相同的数字 ( 比方说 $a_i=b_j=c_k $ 我们称 \((i,j,k)\) 为一个状态 ),才能从前面转移过来,预处理所有这样的状态。状态总数不会很多,几乎是 \(n\) 的级别,再 \(O(n^2)\) DP 即可。
- 棋盘上的旅行 先考虑棋盘上只有 \(k\) 种颜色的情况,直接状态压缩 DP ,\(dp[S][x][y]\) 。但是棋盘颜色很多,怎么办?不妨压缩颜色的值域,所有颜色都对应到 \([1,k]\) (随机化),然后直接 DP 即可,考虑单次的正确性,\(\frac{k!}{k^k}\) (也就是我们选到的颜色恰好是一个排列),\(1000\) 次可以确保通过本题。
- Pop the Balloons 状态压缩 DP 。\(dp[i][S]\) 表示到第 \(i\) 列,已经爆炸的行数状态为 \(S\) 的方案数。这里会有一个问题,一个气球可能被同列的气球炸到,也有可能被同行后面的气球炸到,也就是说,存在决策,某一列一个气球都不炸,这样二进制就表示不了状态了。但是考虑每行最多只会炸一次,最外层的循环,可以枚举所有必然爆炸的行的状态 \(S\) (也就是说,我们假定这些行一定爆炸),一行爆炸后,后面的气球再也不能引爆了,所以在状态转移的时候,到某一列,所有存在的气球的状态,只有没爆炸过的气球才会爆炸,最后的结果就是 \(dp[n][S]\) ,时间复杂度 \(O(nm3^m)\)。通过暴力枚举,建立约束,优化了 DP 的状态表示。
- Fibonacci Subsequence 考虑从后往前 DP ,\(dp[i][j]\) 表示满足条件的序列倒数第二项是 \(a[i]\) ,最后一项是 \(a[j]\) 时的最大长度。找到 \(a[k]=a[i]+a[j]\) 的 \(k\) 来转移。
- Wrap Around 预处理 \(nxt[i][j]\) 表示模式串中长度为 \(i\) 的前缀串后面加个 \(j\) 后匹配到的最长前缀串的长度。\(dp[i][j][k][ok]\) 表示到长度 \(i\) 时,匹配了前缀长度为 \(j\) ,初始状态为 \(k\) ,是否出现过模式串的方案数。这里巧妙的地方在于我们枚举初始状态 \(k\) ,最后要回到初始状态,即当 \(i=n\) 时 \(j=k\) 以及 \(ok=1\) 时才得到一个合法的方案。
- Vasya and Big Integers 首先 Z-function。 \(dp[i]\) 表示 \(s[i...n]\) 可以表示出的合法的方案数。如果两个数字长度相同,那么从左到右第一位不同的数字就可以确定大小。预处理 \(z[i]\) 表示从 \(i\) 开始的字符串与原字符串的最长公共前缀长度,我们可以确定可以从哪些 \(dp[j] (j>i)\) 转移过来,即 \(s[i..j-1]\) 这个子串表示的数字在 \([l,r]\) 之间,这个利用后缀和优化。
DP 题集 2的更多相关文章
- 数位dp题集
题集见大佬博客 不要62 入门题,检验刚才自己有没有看懂 注意一些细节. 的确挺套路的 #include<bits/stdc++.h> #define REP(i, a, b) for(r ...
- 杭电dp题集,附链接还有解题报告!!!!!
Robberies 点击打开链接 背包;第一次做的时候把概率当做背包(放大100000倍化为整数):在此范围内最多能抢多少钱 最脑残的是把总的概率以为是抢N家银行的概率之和- 把状态转移方程写成了f ...
- DP 题集 1
关于 DP 的一些题目 参考资料 [Tutorial] Non-trivial DP Tricks and Techniques DP Rain and Umbrellas Mr. Kitayuta, ...
- ACM题集以及各种总结大全!
ACM题集以及各种总结大全! 虽然退役了,但是整理一下,供小弟小妹们以后切题方便一些,但由于近来考试太多,顾退役总结延迟一段时间再写!先写一下各种分类和题集,欢迎各位大牛路过指正. 一.ACM入门 关 ...
- 2014 HDU多校弟九场I题 不会DP也能水出来的简单DP题
听了ZWK大大的思路,就立马1A了 思路是这样的: 算最小GPA的时候,首先每个科目分配到69分(不足的话直接输出GPA 2),然后FOR循环下来使REMAIN POINT减少,每个科目的上限加到10 ...
- ACM题集以及各种总结大全(转)
ACM题集以及各种总结大全! 虽然退役了,但是整理一下,供小弟小妹们以后切题方便一些,但由于近来考试太多,顾退役总结延迟一段时间再写!先写一下各种分类和题集,欢迎各位大牛路过指正. 一.ACM入门 关 ...
- Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)
题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...
- 4817 江哥的dp题d
4817 江哥的dp题d 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 已知1-N的排列P的LIS(最长上 ...
- 4809 江哥的dp题c
4809 江哥的dp题c 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 有两个数x,y,一开始x=1,y= ...
随机推荐
- WebAPI IE8、IE9 跨域问题
关于WebAPI跨域的问题,网上已经很多了,以下方案可以解决很多跨域问题,但是都不支持IE8.IE9浏览器,JSONP也只能支持Get请求 通过dll配置 Install-Package Micros ...
- org.hibernate.HibernateException: getFlushMode is not valid without active transaction
Spring & Hibernate 整合异常记录: org.hibernate.HibernateException: getFlushMode is not valid without a ...
- gulpfile.js文档
gulp watch 实现监听不仅需要package.json文档,还需要gulpfile.js文档.否则无法实现. 1.gulp的安装 1.1 首先必须先安装node.js.这个可以参考之前的博客& ...
- [Luogu 1196] NOI2002 银河英雄传说
[Luogu 1196] NOI2002 银河英雄传说 话说十六年前的 NOI 真简单... 我一开始还把题看错了- 题意:一群人,每个人各自成一队,每次命令让两队首位相接合成一队,每次询问问你某两个 ...
- 应用于网站导航中的 12 个 jQuery 插件
当考虑到网页设计时,导航被认为是使网页以用户友好方式展现的一个重要部分.在现代的交互网站中,导航起着至关重要的作用,如果没有正确地处理会影响你网站的访问.适当的导航工具能够帮助用户在网站的不同页面内容 ...
- IntelliJ Idea key shortcuts
>Default explaination Official IntelliJ Idea 常用快捷键列表 Shortcuts Ctrl+Shift + Enter,语句完成 "!&qu ...
- c++刷题(6/100)最长上升子序列
题目一:区间子数组个数 给定一个元素都是正整数的数组A ,正整数 L 以及 R (L <= R). 求连续.非空且其中最大元素满足大于等于L 小于等于R的子数组个数. 例如 : 输入: A = ...
- 59、有用过with statement吗?它的好处是什么?
python中的with语句是用来干嘛的?有什么作用? with语句的作用是通过某种方式简化异常处理,它是所谓的上下文管理器的一种 用法举例如下: with open('output.txt', 'w ...
- .net APIHelper client获取数据
using Newtonsoft.Json; using System.Net.Http.Headers; public static class APIHepler { public static ...
- isolation forest进行异常点检测
一.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或者基尼指数来选择.在建树过程中, ...