Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265
题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因子中含有p的q次方.然后让你求题目第一行给你的信息.
首先理一下思路.
第一步,我们需要算题目中要求的公式(第一行),首先,他是一个积性函数,所以我们先将题目中的第一行的式子命名为F(n).对于F(n),我们可以分着求他的每一个因子的解,然后最终将这一写乘起来就可以了.
F(n) = F(p1^q1)*F(p2^q2)........*F(pn^qn).这是积性函数的一个性质.
(积性函数的介绍:https://baike.baidu.com/item/%E7%A7%AF%E6%80%A7%E5%87%BD%E6%95%B0/8354949?fr=aladdin)
第二步,我们开始化简这个式子.中间会运用到 欧拉函数的性质.
(欧拉函数的介绍:https://baike.baidu.com/item/%E6%AC%A7%E6%8B%89%E5%87%BD%E6%95%B0)
第一步,因为题目中给定的因数都是大于1的,所以需要对1单独讨论,然后到了第三行,利用欧拉函数的一个性质,
当f(x)中,x为 质数p的k次幂的时候,f(x)=(p-1)*p^(k-1).
然后其他顺着推下来就可以了.
最后就是将所有因子算出来的结果相乘就可以了(注意取模的位置).
AC代码:
#include<iostream>
#include<cmath>
#include<string>
#include<algorithm>
#include<cstring>
#include<stdio.h>
using namespace std;
# define ll long long
# define inf 0x3f3f3f3f
const int maxn =+;
# define ll long long
# define mod
struct node
{
ll x,y;
} q[maxn];
ll quickpow(ll t1,ll t2)
{
if(t2==)return ;
t2--;
ll ans=t1;
while(t2)
{
if(t2&)ans=ans*t1%mod;
t1=t1*t1%mod;
t2>>=;
}
return ans%mod;
}
int main()
{
int T;
cin>>T;
while(T--)
{
int n;
cin>>n;
for(int i=; i<=n; i++)
{
cin>>q[i].x>>q[i].y;
}
ll ans=;
for(int i=; i<=n; i++)
{
ll temp=quickpow(q[i].x,q[i].y-);
ans=ans*temp%mod*(q[i].x+(q[i].x-)*q[i].y%mod+mod)%mod;
}
cout<<ans<<endl;
}
return ;
}
Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)的更多相关文章
- 【模板】埃拉托色尼筛法 && 欧拉筛法 && 积性函数
埃拉托色尼筛法 朴素算法 1 vis[1]=1; 2 for (int i=2;i<=n;i++) 3 if (!vis[i]) 4 { 5 pri[++tot]=i; 6 for (int j ...
- 积性函数初步(欧拉$\varphi$函数)
updata on 2020.4.3 添加了欧拉\(\varphi\)函数为积性函数的证明和它的计算方式 1.积性函数 设\(f(n)\)为定义在正整数上的函数,若\(f(1)=1\),且对于任意正整 ...
- [模板] 积性函数 && 线性筛
积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, ...
- POJ 2480 Longge's problem 积性函数
题目来源:id=2480" style="color:rgb(106,57,6); text-decoration:none">POJ 2480 Longge's ...
- 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和
只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...
- 51nod1040 最大公约数之和,欧拉函数或积性函数
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...
- POJ 2480 Longge's problem (积性函数,欧拉函数)
题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...
- hdu2421-Deciphering Password-(欧拉筛+唯一分解定理+积性函数+立方求和公式)
Deciphering Password Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- POJ_2480 Longge's problem【积性函数+欧拉函数的理解与应用】
题目: Longge is good at mathematics and he likes to think about hard mathematical problems which will ...
随机推荐
- el表达式作用域查找顺序 注意:当属性名字相同时候 先找到是小的作用域 因为是从小到大开始找的
- 【uoj#282】长度测量鸡 结论题
题目描述 给出一个长度为 $\frac{n(n+1)}2$ 的直尺,要在 $0$ 和 $\frac{n(n+1)}2$ 之间选择 $n-1$ 个刻度,使得 $1\sim \frac{n(n+1)}2$ ...
- Luogu 4917 天守阁的地板(莫比乌斯反演+线性筛)
既然已经学傻了,这个题当然是上反演辣. 对于求积的式子,考虑把[gcd=1]放到指数上.一通套路后可以得到∏D∏d∏i∏j (ijd2)μ(d) (D=1~n,d|D,i,j=1~n/D). 冷静分析 ...
- Qt浅谈之总结(整理)
Qt浅谈之总结(整理) 来源 http://blog.csdn.net/taiyang1987912/article/details/32713781 一.简介 QT的一些知识点总结,方便以后查阅. ...
- MySQL 5.5 主从复制
MySQL 5.5 主从复制的原理.过程 分为同步复制和异步复制,实际复制架构中大部分为异步复制.复制的基本过程如下: 1).Slave上面的IO进程连接上Master,并请求从指定日志文件的指 ...
- 表格隔行变色_jQuery控制实现鼠标悬停高亮
<!doctype html> <html> <head> <meta http-equiv="content-type" content ...
- 【arc075F】Mirrored
Portal --> arc075_f Solution 一开始抱着"我有信仰爆搜就可以过"的心态写了一个爆搜.. 但是因为..剪枝和枚举方式不够优秀愉快T掉了q ...
- Vue项目SEO优化的另一种姿态
背景:当前项目首页和登陆后的平台在一个项目里,路由采用hash模式,现在要做SEO优化,这时候同构SSR(Server Side Rendering)服务端渲染代价显然太大,影响范围比较广,同样更改当 ...
- Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1)A B C 水 并查集 思路
A. Bear and Big Brother time limit per test 1 second memory limit per test 256 megabytes input stand ...
- js 根据url 下载图片
downloadIamge(imgsrc, name) {//下载图片地址和图片名 let image = new Image(); // 解决跨域 Canvas 污染问题 image.setAttr ...