题目链接

回路限制经典题。

每个点拆成入点和出点,源点连每个点的出点,流量1,费用0,每个点出点连汇点,流量1,费用0,入点和出点之间没有边。

也就是说每个点必须靠其他点流来的流量来流入汇点,同时自己的流量流出去,这时候就会形成环,只要把所有流量流满,就必定是题目要求的情形。

所以每个点向前后左右相邻点连边,如果本来就是这个方向,费用为0,否则费用为1,最小费用即为答案。

#include <cstdio>
#include <queue>
#include <cstring>
#define INF 2147483647
using namespace std;
const int MAXN = 1010;
const int MAXM = 200010;
queue <int> q;
int s, t, now, n, m;
struct Edge{
int from, next, to, rest, cost;
}e[MAXM];
int head[MAXN], num = 1, dis[MAXN], vis[MAXN], Flow[MAXN], pre[MAXN];
inline void Add(int from, int to, int flow, int cost){
e[++num] = (Edge){ from, head[from], to, flow, cost }; head[from] = num;
e[++num] = (Edge){ to, head[to], from, 0, -cost }; head[to] = num;
}
int RoadsExist(){
q.push(s);
memset(dis, 127, sizeof dis);
dis[s] = 0; Flow[s] = INF; pre[t] = 0;
while(!q.empty()){
now = q.front(); q.pop(); vis[now] = 0;
for(int i = head[now]; i; i = e[i].next)
if(e[i].rest && dis[e[i].to] > dis[now] + e[i].cost){
dis[e[i].to] = dis[now] + e[i].cost;
pre[e[i].to] = i;
Flow[e[i].to] = min(Flow[now], e[i].rest);
if(!vis[e[i].to]){
vis[e[i].to] = 1;
q.push(e[i].to);
}
}
}
return pre[t];
}
int a[20][20], mincost, l[] = {233, -1, 1, 0, 0}, r[] = {666, 0, 0, -1, 1};
int id(int i, int j, int k){
return (i - 1) * m + j + k * 500;
}
char ch;
int main(){
scanf("%d%d", &n, &m); s = 999; t = 1000;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j){
ch = getchar(); while(ch == '\n' || ch == '\r' || ch == ' ') ch = getchar();
if(ch == 'U') a[i][j] = 1;
if(ch == 'D') a[i][j] = 2;
if(ch == 'L') a[i][j] = 3;
if(ch == 'R') a[i][j] = 4;
Add(s, id(i, j, 0), 1, 0);
Add(id(i, j, 1), t, 1, 0);
}
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
for(int k = 1; k <= 4; ++k){
int x = i + l[k], y = j + r[k];
if(!x) x = n; if(!y) y = m; if(x > n) x = 1; if(y > m) y = 1;
Add(id(i, j, 0), id(x, y, 1), 1, a[i][j] != k);
}
while(RoadsExist()){
mincost += Flow[t] * dis[t];
for(int i = t; i != s; i = e[pre[i]].from){
e[pre[i]].rest -= Flow[t];
e[pre[i] ^ 1].rest += Flow[t];
}
}
printf("%d\n", mincost);
return 0;
}

【洛谷 P3965】 [TJOI2013]循环格(费用流)的更多相关文章

  1. 洛谷 P3965 [TJOI2013]循环格 解题报告

    P3965 [TJOI2013]循环格 题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子. 每个元素有一个坐标(行,列),其中左上角元素坐标为\((0,0)\).给定一个起始位\ ...

  2. Bzoj 3171: [Tjoi2013]循环格 费用流

    3171: [Tjoi2013]循环格 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 741  Solved: 463[Submit][Status][ ...

  3. [TJOI2013]循环格 费用流 BZOJ3171

    题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位(r,c),你可以沿着箭头方向在格子间行走.即:如果 ...

  4. 洛咕 P3965 [TJOI2013]循环格

    同tjoi2010 打扫房间,每个点入度,出度都为1,可以向相邻4个点连边,但只有原来存在的边费用为0. // luogu-judger-enable-o2 #include<bits/stdc ...

  5. BZOJ 3171 循环格(费用流)

    题意 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c),你可以沿着箭头防线在格子间行走.即如果(r ...

  6. 洛谷 1004 dp或最大费用流

    思路: dp方法: 设dp[i][j][k][l]为两条没有交叉的路径分别走到(i,j)和(k,l)处最大价值. 则转移方程为 dp[i][j][k][l]=max(dp[i-1][j][k-1][l ...

  7. 洛谷P4003 无限之环(费用流)

    传送门 神仙题啊……不看题解我可能一年都不一定做得出来……FlashHu大佬太强啦 到底是得有怎样的脑回路才能一眼看去就是费用流啊…… 建好图之后套个板子就好了,那么我们着重来讨论一下怎么建图 首先, ...

  8. 洛谷P4012 深海机器人问题(费用流)

    题目描述 深海资源考察探险队的潜艇将到达深海的海底进行科学考察. 潜艇内有多个深海机器人.潜艇到达深海海底后,深海机器人将离开潜艇向预定目标移动. 深海机器人在移动中还必须沿途采集海底生物标本.沿途生 ...

  9. 洛谷P2517 HAOI2010 订货 (费用流)

    标准的费用流问题,关键在于巧妙地建模 一共有n个月份,源点设为0,汇点设为n+1 1.源点向所有月份连边,容量为正无穷,费用为该月进货的费用 2.每个月向下一个月连边,容量为仓库容量,费用为存货费用 ...

  10. 洛谷P4016 负载平衡问题 费用流

    这道题还是很好的. 考察了选手对网络流的理解. 首先,任意两个相邻点之间的运货量时没有限制的. 我们可以将相邻点之间的流量建为无限大,单位费用设为 1,代表运输一个货物需耗费一个代价. 由于题目要求最 ...

随机推荐

  1. 团队项目-BUG排查-ADT工程 To Android Studio 一整天的排查日记

    4-22 10:44至4-23 0:45 ①打开Eclipse从Github上Clone MathsApp到本机,报错'Unable to resolve target'android-19' ②尝试 ...

  2. 3dContactPointAnnotationTool开发日志(二八)

      师姐说物体间不能有穿透,于是我试了下给物体加rigidbody和meshCollider   然后就报错:   说是用meshCollider要么去掉刚体要么就把刚体设置为iskinematic. ...

  3. 【Leetcode】725. Split Linked List in Parts

    Given a (singly) linked list with head node root, write a function to split the linked list into k c ...

  4. log4j配置独立日志方法

    不使用类,而是使用loggerName来创建日志: #json是用java代码创建logger时用name,而不是jsonlog,注意,不需要在rootLogger中再配置,否则其它无关信息也将输出到 ...

  5. Django 2.0 学习(16):Django ORM 数据库操作(下)

    Django ORM数据库操作(下) 一.增加表记录 对于表单有两种方式: # 方式一:实例化对象就是一条表记录france_obj = models.Student(name="海地&qu ...

  6. Django对应的路由名称

    1. 名字很长,修改起来很麻烦 2.Django提供了一种方法 在urls.py中修改了名字以后,html中会自动对应做修改.这样提交表单的时候就会比较方便了.跳转到写死的某个URL. 3.根据名字i ...

  7. 转:解决Python中文编码问题

    Python 文本挖掘:解决Python中文编码问题 转于:http://rzcoding.blog.163.com/blog/static/2222810172013101785738166/   ...

  8. 专题训练之数位DP

    推荐以下一篇博客:https://blog.csdn.net/wust_zzwh/article/details/52100392 1.(HDOJ2089)http://acm.hdu.edu.cn/ ...

  9. django 自己编写admin

    继上次CRM项目之后 我们发现了django自带admin的强大之处以及灵活性,但是admin在企业中也一样很难做到完全的对接,因此编写自己的后台管理就显得至关重要. 本次自定义admin项目将接着上 ...

  10. MFC之ListCtrl动态添加按钮

    先上效果图: 图中用了一个CListCtrl插件,隐藏了网格线(LVS_EX_GRIDLINES). 添加了“删除”按钮(按钮上贴了图片),选中哪一行则显示在哪一行. 有两种方式创建按钮,一种是直接根 ...