题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407

\( ans = \sum\limits_{D=1}^{min(n,m)}\frac{n}{D}*\frac{m}{D}\sum\limits_{d|D}d^{k}\mu (\frac{D}{d}) \)

设 \( g[ i ]=\sum\limits_{j|i}(\frac{i}{j})^{k}*\mu (j) \) ,则 g 是积性函数(因为 id 是积性函数,所以 idk 也是;u 也是积性,卷积起来也是积性),可以筛。

g 在质因数幂地方的取值可以手动筛到一个质因数的时候赋了,遇到 i % pri[ j ] == 0 的时候就可以把 i 的 pri[ j ] 都拿出来,然后相乘得到了。

或者遇到 i % pri[ j ] == 0 的时候,发现这个 pri[ j ] 的贡献不在 \( \mu \) 里,所以只要给 g[ i ] 乘上 pri[ j ] 就行了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=5e6+,mod=1e9+;
int T,w,g[N],s[N],pri[N];bool vis[N];
void upd(int &x){x>=mod?x-=mod:;}
int pw(int x,int k)
{int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;}
void init()
{
int lm=5e6,cnt=;
g[]=s[]=;
for(int i=;i<=lm;i++)
{
if(!vis[i])
{
pri[++cnt]=i;
for(ll j=i,k=;j<=lm;j*=i,k*=i)
g[j]=pw(j,w)-pw(k,w)+mod,upd(g[j]),vis[j]=;
}
for(int j=;j<=cnt&&(ll)i*pri[j]<=lm;j++)
{
int d=i*pri[j]; if(vis[d])break; vis[d]=;
int k=d;while(k%pri[j]==)k/=pri[j];
g[d]=(ll)g[k]*g[d/k]%mod;
if(i%pri[j]==)break;
}
s[i]=s[i-]+g[i];upd(s[i]);
}
}
int main()
{
scanf("%d%d",&T,&w); init(); int n,m;
while(T--)
{
scanf("%d%d",&n,&m); if(n>m)swap(n,m);
int ans=;
for(int i=,j;i<=n;i=j+)
{
int d0=n/i,d1=m/i; j=min(n/d0,m/d1);
ans=(ans+(ll)d0*d1%mod*(s[j]-s[i-]+mod))%mod;
}
printf("%d\n",ans);
}
return ;
}

bzoj 4407 于神之怒加强版——反演的更多相关文章

  1. bzoj 4407 于神之怒加强版 —— 反演+筛积性函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407 推导如这里:https://www.cnblogs.com/clrs97/p/5191 ...

  2. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  3. bzoj 4407 于神之怒加强版 (反演+线性筛)

    于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1184  Solved: 535[Submit][Status][Discuss] D ...

  4. ●BZOJ 4407 于神之怒加强版

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题解: 莫比乌斯反演 直接套路化式子 $\begin{align*}ANS&= ...

  5. bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】

    看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...

  6. BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]

    题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...

  7. BZOJ.4407.于神之怒加强版(莫比乌斯反演)

    题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...

  8. BZOJ 4407: 于神之怒加强版 莫比乌斯反演 + 线筛积性函数

    Description 给下N,M,K.求     Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意 ...

  9. BZOJ 4407 于神之怒加强版

    http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题意: 给下N,M,K.求 思路:  来自:http://blog.csdn.net/ws_y ...

随机推荐

  1. 三十一 Python分布式爬虫打造搜索引擎Scrapy精讲—chrome谷歌浏览器无界面运行、scrapy-splash、splinter

    1.chrome谷歌浏览器无界面运行 chrome谷歌浏览器无界面运行,主要运行在Linux系统,windows系统下不支持 chrome谷歌浏览器无界面运行需要一个模块,pyvirtualdispl ...

  2. 基于vue-cli,测试非父子传值时,碰到 keep-alive的神奇

    非父子传值测试 一直都很好奇非父子传值到底如何,结果入坑许久才爬出来,才知道在脚手架里测试就是坑. 问题: 测试非父子传值时,由于组件之间是通过路由进行跳转,值传过去又被刷掉 思路: 因为路由跳转,相 ...

  3. echarts在miniUI和ajax下动态渲染数据

    <script src="echarts.js"></script> <script src="jquery-3.3.1.min.js&qu ...

  4. shiro的三大功能

    1.提供的功能

  5. Disruptor快速入门

    在JDK的多线程与并发库一文中, 提到了BlockingQueue实现了生产者-消费者模型 BlockingQueue是基于锁实现的, 而锁的效率通常较低. 有没有使用CAS机制实现的生产者-消费者? ...

  6. 【51nod-1521】一维战舰

    爱丽丝和鲍博喜欢玩一维战舰的游戏.他们在一行有n个方格的纸上玩这个游戏(也就是1×n的表格). 在游戏开始的时候,爱丽丝放k个战舰在这个表格中,并不把具体位置告诉鲍博.每一只战舰的形状是 1×a 的长 ...

  7. hdu2732

    题解: 和上一题差不多 然后注意格式 代码: #include<cstdio> #include<cmath> #include<algorithm> #inclu ...

  8. 【LeetCode 100_二叉树_遍历】Same Tree

    解法一:递归 bool isSameTree(TreeNode* p, TreeNode* q) { if (p == NULL && q == NULL) return true; ...

  9. 迁移到阿里云后,NTKO控件报存word 报文件存取错误,请检查网络传输。

    解决办法:安装如下组件即可!

  10. mysql报错注入手工方法

    以前觉得报错注入有那么一长串,还有各种concat(),rand()之类的函数,不方便记忆和使用,一直没怎么仔细的学习过.这次专门学习了一下,看了一些大牛的总结,得到一些经验,特此记录下来,以备后续巩 ...