题意

PDF

分析

如果要求是某行某列没有石子很好算,就一个组合数。

然后要求某行某列有,就用容斥原理就行了。

时间复杂度\(O(k^2 + 16T)\)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<ctime>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
    rg T data=0;
    rg int w=1;
    rg char ch=getchar();
    while(!isdigit(ch))
    {
        if(ch=='-')
            w=-1;
        ch=getchar();
    }
    while(isdigit(ch))
    {
        data=data*10+ch-'0';
        ch=getchar();
    }
    return data*w;
}
template<class T>T read(T&x)
{
    return x=read<T>();
}
using namespace std;
typedef long long ll;

co int K=500,mod=1e6+7;
int C[K+10][K+10];

int add(int x,int y)
{
    x+=y;
    return x>=mod?x-mod:x;
}

int sub(int x,int y)
{
    x-=y;
    return x<0?x+mod:x;
}

int main()
{
//  freopen(".in","r",stdin);
//  freopen(".out","w",stdout);
    C[0][0]=1;
    for(int i=0;i<=K;++i)
    {
        C[i][0]=C[i][i]=1;
        for(int j=1;j<i;++j)
            C[i][j]=add(C[i-1][j],C[i-1][j-1]);
    }
    int T=read<int>();
    for(int kase=1;kase<=T;++kase)
    {
        int n,m,k,sum=0;
        read(n);read(m);read(k);
        for(int s=0;s<16;++s)
        {
            int b=0,r=n,c=m;
            if(s&1)
                r--,b++;
            if(s&2)
                r--,b++;
            if(s&4)
                c--,b++;
            if(s&8)
                c--,b++;
            if(b&1)
                sum=sub(sum,C[r*c][k]);
            else
                sum=add(sum,C[r*c][k]);
        }
        printf("Case %d: %d\n",kase,sum);
    }
    return 0;
}

UVA11806 Cheerleaders的更多相关文章

  1. 【UVA11806 Cheerleaders】 题解

    题目链接:https://www.luogu.org/problemnew/show/UVA11806 容斥原理+组合数 正着找合♂fa的不好找,那就用总方案数-不合♂fa的 #include < ...

  2. UVA-11806 Cheerleaders 计数问题 容斥定理

    题目链接:https://cn.vjudge.net/problem/UVA-11806 题意 在一个mn的矩形网格里放k个石子,问有多少方法. 每个格子只能放一个石头,每个石头都要放,且第一行.最后 ...

  3. UVa11806 Cheerleaders(容斥原理)

    11806 - Cheerleaders Time limit: 2.000 seconds C Cheerleaders In most professional sporting events, ...

  4. UVA11806 Cheerleaders (容斥)

    题目链接 Solution 可以考虑到总方案即为 \(C_{nm}^k\) . 考虑到要求的是边缘都必须至少有 \(1\) ,所以考虑不合法的. 第一行和最后一行没有的方案即为 \(C_{(n-1)m ...

  5. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  6. UVA 11806 Cheerleaders dp+容斥

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  7. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  8. 【递推】【组合数】【容斥原理】UVA - 11806 - Cheerleaders

    http://www.cnblogs.com/khbcsu/p/4245943.html 本题如果直接枚举的话难度很大并且会无从下手.那么我们是否可以采取逆向思考的方法来解决问题呢?我们可以用总的情况 ...

  9. Cheerleaders UVA - 11806 计数问题

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

随机推荐

  1. python selenium常用基本方法---H5和键盘鼠标操作

    一.模拟手机打开页面(H5测试) from selenium import webdriver mobile_emulation = {'deviceName':'iPhone X'} options ...

  2. 作业列表 of《软件测试技术》

    作业1(截止时间3月22日) 请使用excel模板或word模板,完成对126邮箱登录功能的测试用例编写,界面如下图.提交到ftp. --------------------------------- ...

  3. AOP(面向切面)的粗俗理解

    百度百科的解释:AOP主要实现的目的是针对业务处理过程中的切面进行提取,它所面对的是处理过程中的某个步骤或阶段,以获得逻辑过程中各部分之间低耦合性的隔离效果. 一个比较绕的概念,简单来说就是把不影响业 ...

  4. clientWidth、offsetWidth等介绍

    网页可见区域宽:document.body.clientWidth网页可见区域高:document.body.clientHeight网页可见区域宽:document.body.offsetWidth ...

  5. S16课件

    Python之路,Day1 - Python基础1 介绍.基本语法.流程控制 Python之路,Day2 - Python基础2 列表.字典.集合 Python之路,Day3 - Python基础3  ...

  6. Day11 - Python操作memcache、redis缓存、rabbitMQ队列

    本周课前必备: 1. Memcached 2. Python操作Memcached模块: https://pypi.python.org/pypi/python-memcached 3. Redis ...

  7. Quartz 框架 教程(中文版)2.2.x

    Quartz 框架 教程(中文版)2.2.x 之第一课 开始使用Quartz框架 Quartz 框架 教程(中文版)2.2.x 之第二课 Quartz API,Jobs和Triggers简介 Quar ...

  8. watch和computed的用法区别是什么?

    在模板中绑定表达式是非常便利的,但是它们实际上只用于简单的操作.模板是为了描述视图的结构.在模板中放入太多的逻辑会让模板过重且难以维护.这就是为什么 Vue.js 将绑定表达式限制为一个表达式.如果需 ...

  9. windows 2008 server R2 服务器docker安装

    1.安装包选择 windows win10 较新版本,使用 Get Docker for Windows (Stable) 或者 Get Docker for Windows (Edge) 其余使用  ...

  10. 【Html 学习笔记】第八节——表单实践

    列举一些实践的例子: 1.点击按钮后跳转: <html> <body> <form action="1.html"> First <inp ...