前两天解决了一个优化SQL的case,SQL语句如下,big_table为150G大小,small_table很小,9000多条记录,不到1M大小,hash_area_size, sort_area_size均设置足够大,可以进行optimal hash join和memory sort。

1
2
3
4
5
6
select /*+ leading(b) use_hash(a b) */ distinct a.ID
from BIG_TABLE a, SMALL_TABLE b
where (a.category  = b.from_cat or
       a.category2 = b.from_cat) and
       a.site_id  = b.site_id and
       a.sale_end >= sysdate;

执行计划如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
--------------------------------------------------------------------------
| Id  | Operation            |  Name        | Rows  | Bytes | Cost (%CPU)|
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT     |              |     2 |   174 |    18  (17)|
|   1 |  SORT UNIQUE         |              |     2 |   174 |    18  (17)|
|*  2 |   HASH JOIN          |              |     2 |   174 |    17  (12)|
|   3 |    TABLE ACCESS FULL | SMALL_TABLE  |  1879 | 48854 |    14   (8)|
|*  4 |    TABLE ACCESS FULL | BIG_TABLE    |     4 |   244 |     3  (34)|
--------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
   2 - access("A"."SITE_ID"="B"."SITE_ID")
       filter("A"."CATEGORY"="B"."FROM_CAT" OR
              "A"."CATEGORY2"="B"."FROM_CAT")
   4 - filter("A"."SALE_END">=SYSDATE@!)

粗略来看,PLAN非常的完美,SQL HINT写的也很到位,小表在内build hash table,大表在外进行probe操作,根据经验来看,整个SQL执行的时间应该和FTS(Full Table Scan) BIG_TABLE的时间差不多。

但是FTS BIG_TABLE的时间大约是8分钟,而真个SQL执行的时间长达3~4小时。

那么问题究竟出在哪里?

FTS时间应该不会有太大变化,那么问题应该在hash join,设置event来trace一下hash join的过程:

1
alter session set events '10104 trace name context forever, level 2';
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
### Hash table ###
# NOTE: The calculated number of rows in non-empty buckets may be smaller
#       than the true number.
Number of buckets with   0 rows:      16373
Number of buckets with   1 rows:          0
Number of buckets with   2 rows:          0
Number of buckets with   3 rows:          1
Number of buckets with   4 rows:          0
Number of buckets with   5 rows:          0
Number of buckets with   6 rows:          0
Number of buckets with   7 rows:          1
Number of buckets with   8 rows:          0
Number of buckets with   9 rows:          0
Number of buckets with between  10 and  19 rows:          1
Number of buckets with between  20 and  29 rows:          1
Number of buckets with between  30 and  39 rows:          3
Number of buckets with between  40 and  49 rows:          0
Number of buckets with between  50 and  59 rows:          0
Number of buckets with between  60 and  69 rows:          0
Number of buckets with between  70 and  79 rows:          0
Number of buckets with between  80 and  89 rows:          0
Number of buckets with between  90 and  99 rows:          0
Number of buckets with 100 or more rows:          4
### Hash table overall statistics ###
Total buckets: 16384 Empty buckets: 16373 Non-empty buckets: 11
Total number of rows: 9232
Maximum number of rows in a bucket: 2531
Average number of rows in non-empty buckets: 839.272705

仔细看,在一个bucket中最多的行数竟然有2531行,因为bucket中是一个链表的结构,所以这几千行都是串在一个链表上。 
由这一点想到这个Hash Table所依赖的hash key的distinct value可能太少,重复值太多。否则不应该会有这么多行在同一个bucket里面。

因为Join条件里面有两个列from_cat和site_id,穷举法有三种情况:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
SQL> select site_id,from_cat,count(*) from SMALL_TABLE group by site_id,from_cat having count(*)>100;
 
no rows selected
 
2. Build hash table based on (from_cat):
 
SQL> select from_cat,count(*) from SMALL_TABLE group by from_cat having count(*)>100;
 
no rows selected
 
3. Build hash table based on (site_id):
 
SQL> select site_id,count(*) from SMALL_TABLE group by site_id having count(*)>100;
 
   SITE_ID   COUNT(*)
---------- ----------
         0       2531
         2       2527
       146       1490
       210       2526

到这里可以发现,基于site_id这种情况和trace file中这两行很相符:

1
2
Number of buckets with 100 or more rows: 4
Maximum number of rows in a bucket: 2531

注:这判断过程可以从执行计划的“Predicate Information”部分看出:

1
access("A"."SITE_ID"="B"."SITE_ID")

所以推断这个hash table是基于site_id而建的,而Big_Table中大量的行site_id=0,都落在这个linked list最长的bucket中,而大部分行都会扫描完整个链表而最后被丢弃掉,所以这个Hash Join的操作效率非常差,几乎变为了Nest Loop操作。

找到了根本原因,问题也就迎刃而解了。

理想状况下,hash table应当建立于(site_id,from_cat)上,那么问题肯定出在这个OR上,把OR用UNION改写:

1
2
3
4
5
6
7
8
9
10
11
select /*+ leading(b) use_hash(a b) */ distinct a.ID
from BIG_TABLE a, SMALL_TABLE b
where  a.category  = b.from_cat and
       a.site_id  = b.site_id and
       a.sale_end >= sysdate
UNION
select /*+ leading(b) use_hash(a b) */ distinct a.ID
from BIG_TABLE a, SMALL_TABLE b
where  a.category2 = b.from_cat and
       a.site_id  = b.site_id and
       a.sale_end >= sysdate;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
--------------------------------------------------------------------------
| Id  | Operation            |  Name        | Rows  | Bytes | Cost (%CPU)|
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT     |              |     2 |   148 |    36  (59)|
|   1 |  SORT UNIQUE         |              |     2 |   148 |    36  (59)|
|   2 |   UNION-ALL          |              |       |       |            |
|*  3 |    HASH JOIN         |              |     1 |    74 |    17  (12)|
|   4 |     TABLE ACCESS FULL| SMALL_TABLE  |  1879 | 48854 |    14   (8)|
|*  5 |     TABLE ACCESS FULL| BIG_TABLE    |     4 |   192 |     3  (34)|
|*  6 |    HASH JOIN         |              |     1 |    74 |    17  (12)|
|   7 |     TABLE ACCESS FULL| SMALL_TABLE  |  1879 | 48854 |    14   (8)|
|*  8 |     TABLE ACCESS FULL| BIG_TABLE    |     4 |   192 |     3  (34)|
--------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
   3 - access("A"."CATEGORY"="B"."FROM_CAT" AND
              "A"."SITE_ID"="B"."SITE_ID")
   5 - filter("A"."SALE_END">=SYSDATE@!)
   6 - access("A"."CATEGORY2"="B"."FROM_CAT" AND
              "A"."SITE_ID"="B"."SITE_ID")
   8 - filter("A"."SALE_END">=SYSDATE@!)

初看这个PLAN好像不如第一个PLAN,因为执行了两次BIG_TABLE的FTS,但是让我们在来看看HASH TABLE的结构

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
### Hash table ###
# NOTE: The calculated number of rows in non-empty buckets may be smaller
#       than the true number.
Number of buckets with   0 rows:       9306
Number of buckets with   1 rows:       5310
Number of buckets with   2 rows:       1436
Number of buckets with   3 rows:        285
Number of buckets with   4 rows:         43
Number of buckets with   5 rows:          4
Number of buckets with   6 rows:          0
Number of buckets with   7 rows:          0
Number of buckets with   8 rows:          0
Number of buckets with   9 rows:          0
Number of buckets with between  10 and  19 rows:          0
Number of buckets with between  20 and  29 rows:          0
Number of buckets with between  30 and  39 rows:          0
Number of buckets with between  40 and  49 rows:          0
Number of buckets with between  50 and  59 rows:          0
Number of buckets with between  60 and  69 rows:          0
Number of buckets with between  70 and  79 rows:          0
Number of buckets with between  80 and  89 rows:          0
Number of buckets with between  90 and  99 rows:          0
Number of buckets with 100 or more rows:          0
### Hash table overall statistics ###
Total buckets: 16384 Empty buckets: 9306 Non-empty buckets: 7078
Total number of rows: 9232
Maximum number of rows in a bucket: 5
Average number of rows in non-empty buckets: 1.304323

这就是我们所需要的Hash Table,最长的链表只有五行数据。

整个SQL的执行时间从三四个小时缩短为16分钟,大大超出了developer的预期。

这个SQL单纯从PLAN上很难看出问题所在,需要了解Hash Join的机制,进行更深一步的分析。

source:http://www.itpub.net/thread-955209-1-1.html

oralce之 10046对Hash Join分析的更多相关文章

  1. minhash pyspark 源码分析——hash join table是关键

    从下面分析可以看出,是先做了hash计算,然后使用hash join table来讲hash值相等的数据合并在一起.然后再使用udf计算距离,最后再filter出满足阈值的数据: 参考:https:/ ...

  2. Merge join、Hash join、Nested loop join对比分析

    简介 我们所常见的表与表之间的Inner Join,Outer Join都会被执行引擎根据所选的列,数据上是否有索引,所选数据的选择性转化为Loop Join,Merge Join,Hash Join ...

  3. SQL Tuning 基础概述06 - 表的关联方式:Nested Loops Join,Merge Sort Join & Hash Join

    nested loops join(嵌套循环)   驱动表返回几条结果集,被驱动表访问多少次,有驱动顺序,无须排序,无任何限制. 驱动表限制条件有索引,被驱动表连接条件有索引. hints:use_n ...

  4. Sort merge join、Nested loops、Hash join(三种连接类型)

    目前为止,典型的连接类型有3种: Sort merge join(SMJ排序-合并连接):首先生产driving table需要的数据,然后对这些数据按照连接操作关联列进行排序:然后生产probed ...

  5. 视图合并、hash join连接列数据分布不均匀引发的惨案

    表大小 SQL> select count(*) from agent.TB_AGENT_INFO; COUNT(*) ---------- 1751 SQL> select count( ...

  6. Oracle 表的连接方式(2)-----HASH JOIN的基本机制1

    我们对hash join的常见误解,一般包括两个: 第一个误解:是我们经常以为hash join需要对两个做join的表都做全表扫描 第二个误解:是经常以为hash join会选择比较小的表做buil ...

  7. oracle 表连接 - hash join 哈希连接

    一. hash 连接(哈希连接)原理 指的是两个表连接时, 先利用两表中记录较少的表在内存中建立 hash 表, 然后扫描记录较多的表并探測 hash 表, 找出与 hash 表相匹配的行来得到结果集 ...

  8. [20180713]关于hash join 测试中一个疑问.txt

    [20180713]关于hash join 测试中一个疑问.txt --//上个星期做的测试,链接: http://blog.itpub.net/267265/viewspace-2157424/-- ...

  9. [20180705]关于hash join 2.txt

    [20180705]关于hash join 2.txt --//昨天优化sql语句,执行计划hash join right sna,加入一个约束设置XX字段not null,逻辑读从上万下降到50.- ...

随机推荐

  1. 设计模式--状态模式C++实现

    1定义 当一个状态的内在状态改变时允许其行为改变,这个对象看起来像改变了其类 2类图 角色分析 State抽象状态角色,接口或者抽象类,负责状态定义,并且封装环境角色以实现状态切换 ConcreteS ...

  2. Vlmcsd(KMS)激活服务器程序

    1.下载vlmcsd程序 2-1.虚拟机版本: 新建Linux虚拟机,硬件仅保留内存(最小14MB,推荐16MB).处理器(1个1核心).软盘(指向floppy144.flp).网络适配器(桥接模式) ...

  3. Java开发微信公众号模板消息【同步|异步】

    第一步:申请模板消息功能并添加模板 在微信公众平台找到你需要的模板,并添加上即可: 第二步:添加功能模块后开始开发 功能中使用的类及代码: 发送数据主实体类: Template.java packag ...

  4. jquery基础 笔记一

    一. 1. vsdoc: 在Visual Studio中需要引入此版本的jquery类库才能启用智能感知.如:jquery-1.3.2-vsdoc2.js<body> <div id ...

  5. 十六、dbms_space_admin(提供了局部管理表空间的功能)

    1.概述 作用:提供了局部管理表空间的功能 2.包的组成 1).segment_verify作用:用于检查段的区映像是否与位图一致语法:dbms_space_admin.segment_verify( ...

  6. MySQL Batched Key Access

    Batched Key Access是MySQL 5.6 版本中的新特性,是一种用户提高表join性能的算法.[Batched Key Access]       对于多表join语句,当MySQL使 ...

  7. java根据所给的根目录获取底下所有文件夹结构

    所写工具类背景:项目经理叫我写个工具类实现:给个项目的根目录分析java文件及jsp文件.记录文件类型.路径.文件名和包名. 定义的实体类(这里我用了easypoi以后方便写入excel文档) @Da ...

  8. Ti IPNC Web网页之ActiveX控件

    Ti IPNC Web网页之ActiveX控件 本篇介绍关于TI IPNC网页中播放器相关的东西. gStudio工程中添加播放器并控制播放器 打开IPNC网页时首先会自动下载ActiveX控件并安装 ...

  9. iOS如何直接跳转到App Store

    在iOS应用中如何直接跳转到AppStore里面?其实这个问题很简单,首先拿到你要跳转到的AppStore地址(URL) 例如:https://itunes.apple.com/us/app/中久便利 ...

  10. HashMap resize方法的理解(一)

    对于oldTable中存储的为15.7.4.5.8.1,长度为8的一个数组中,存储位置如下 0 1 2 3 4 5 6 7 8 1 4 5 15 7 当扩容到一倍后,对于新的位置的选择通过e.hash ...