(剑指Offer)面试题27:二叉搜索树与双向链表
题目:
输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点,只能调整树中结点指针的指向。
二叉树的定义如下:
struct TreeNode{
int val;
TreeNode* left;
TreeNode* right;
};
思路:
在二叉树中,每个结点都有两个指向子结点的指针,在双向链表中,每个结点也有两个指针,他们分别指向前一个结点和后一个结点。两种数据结构看起来很相似,是可以通过某种方式将二叉搜索树转换为排序的双向链表。
在二叉搜索树中,当遍历到根结点时,把二叉树看成三部分,根结点、左子树和右子树,根据排序链表的定义,根结点的左指针应该指向左子树中最大的结点,即最右边的结点;根结点的右指针应该指向右子树中最小的结点,即最左边的结点。
在把左子树、右子树都转换成排序的双向排序链表(递归)之后,再跟根结点连接起来,整棵二叉搜索树就转换成了排序的双向链表。
因此在设计递归函数时,需要返回链表的头指针和尾指针,并改变当前结点的左右指针的指向。(详见代码)
代码:
#include <iostream> using namespace std; struct TreeNode{
int val;
TreeNode* left;
TreeNode* right;
}; TreeNode* ConvertNodes(TreeNode* pRoot,TreeNode** pTail); TreeNode* Convert(TreeNode* pRoot){
TreeNode* pTail=NULL;
return ConvertNodes(pRoot,&pTail);
} TreeNode* ConvertNodes(TreeNode* pRoot,TreeNode** pTail){
if(pRoot==NULL)
return NULL;
if(pRoot->left==NULL && pRoot->right==NULL){
*pTail=pRoot;
return pRoot;
}
TreeNode* leftHead=pRoot;
if(pRoot->left!=NULL){
leftHead=ConvertNodes(pRoot->left,pTail);
pRoot->left=*pTail;
if(*pTail!=NULL)
(*pTail)->right=pRoot;
*pTail=pRoot;
} if(pRoot->right!=NULL){
TreeNode* rightHead=ConvertNodes(pRoot->right,pTail);
pRoot->right=rightHead;
if(rightHead!=NULL)
rightHead->left=pRoot;
}
return leftHead;
}
在线测试OJ:
http://www.nowcoder.com/books/coding-interviews/947f6eb80d944a84850b0538bf0ec3a5?rp=2
AC代码:
class Solution {
public:
TreeNode* Convert(TreeNode* pRootOfTree)
{
TreeNode* pTail=NULL;
return ConvertNodes(pRootOfTree,&pTail);
} TreeNode* ConvertNodes(TreeNode* pRoot,TreeNode** pTail){
if(pRoot==NULL)
return NULL;
if(pRoot->left==NULL && pRoot->right==NULL){
*pTail=pRoot;
return pRoot;
} TreeNode* leftHead=pRoot;
if(pRoot->left!=NULL){
leftHead=ConvertNodes(pRoot->left,pTail);
pRoot->left=*pTail;
if(*pTail!=NULL)
(*pTail)->right=pRoot;
*pTail=pRoot;
} if(pRoot->right!=NULL){
TreeNode* rightHead=ConvertNodes(pRoot->right,pTail);
pRoot->right=rightHead;
if(rightHead!=NULL)
rightHead->left=pRoot;
}
return leftHead;
} };
(剑指Offer)面试题27:二叉搜索树与双向链表的更多相关文章
- 剑指Offer:面试题27——二叉搜索树与双向链表(java实现)
问题描述: 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 思路: 将树分为三部分:左子树,根结点,右子树. 1.我们要把根结点与左 ...
- 剑指offer 面试题36.二叉搜索树与双向链表
中序递归,一个pre节点记录前一个节点 /* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; Tre ...
- 剑指Offer - 九度1503 - 二叉搜索树与双向链表
剑指Offer - 九度1503 - 二叉搜索树与双向链表2014-02-05 23:39 题目描述: 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树 ...
- 剑指Offer:面试题24——二叉搜索树的后序遍历序列(java实现)
问题描述: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则返回true,否则返回false.假设输入的数组的任意两个数字都互不相同. 思路: 1.首先后序遍历的结果是[(左子 ...
- 剑指offer(26)二叉搜索树与双向链表
题目描述 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 题目分析 要生成排序的双向列表,那么只能是中序遍历,因为中序遍历才能从小到 ...
- 【剑指Offer】26、二叉搜索树与双向链表
题目描述: 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 解题思路: 首先要理解此题目的含义,在双向链表中,每个结 ...
- 剑指Offer - 九度1367 - 二叉搜索树的后序遍历序列
剑指Offer - 九度1367 - 二叉搜索树的后序遍历序列2013-11-23 03:16 题目描述: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出 ...
- 剑指offer(20)二叉搜索树与双向表
题目: 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 思路一:递归法 1.将左子树构造成双链表,并返回链表头节点. 2.定位至左子 ...
- 剑指offer(23)二叉搜索树的后序遍历序列
题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 题目分析 1.后续遍历我们可以知道,最右边的是根节 ...
- 剑指offer(62)二叉搜索树的第K个节点
题目描述 给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4. 题目分析 首先,我们可以先画图.画完图后我们要想办法从 ...
随机推荐
- 基于HTTP的直播点播HLS
HLS(HTTP Live Streaming) 是Apple在2009年发布的,可以通过普通的web服务器进行分发的新型流媒体协议.苹果官方对于视频直播服务提出了 HLS 解决方案 ...
- mysql 添加索引后 在查询的时候是mysql就自动从索引里面查询了。还是查询的时候有单 独的参数查询索引?
MYSQL在创建索引后对索引的使用方式分为两种:1 由数据库的查询优化器自动判断是否使用索引:2 用户可在写SQL语句时强制使用索引 下面就两种索引使用方式进行说明第一种,自动使用索引.数据库在收到查 ...
- mysql中批量替换数据库中的内容的sql
经过几次系统升级,遇到域名变了,文件存储目录变了,但之前被存到数据库里了,手动改太麻烦了,下面这个sql语句太给力了,屡试不爽. update table set body = replace(bod ...
- pageX,clientX,offsetX,layerX的区别
pageX,clientX,offsetX,layerX的区别 在各个浏览器的JS中,有很多个让你十分囧的属性,由于各大厂商对标准的解释和执行不一样,导致十分混乱,也让我们这些前端攻城狮十分无语和纠结 ...
- Linux下常用软件
一, vmtool安装, 进入桌面就后,如果没有看到VMware Tools光盘, 请点击VMware Station菜单栏上的“虚拟机”,然后选择“安装VMware Tools”,就可以在桌面上以看 ...
- IoC Service Provier
本文节选自<Spring 揭秘>. 虽然业务对象可以通过IoC方式声明相应的依赖,但是最终仍然需要通过某种角色或者服务将这些相互依赖的对象绑定到一起,而IoC Service Provid ...
- Trie树也称字典树
Trie树 Trie树也称字典树,因为其效率很高,所以在在字符串查找.前缀匹配等中应用很广泛,其高效率是以空间为代价的. 一.Trie树的原理 利用串构建一个字典树,这个字典树保存了串的公共前缀信息, ...
- 指向函数的指针数组(C++)
我们能够创建一个指向函数的指针数组.为了选择一个函数,只需要使用数组的下标,然后间接引用这个指针.这种方式支持表格式驱动码的概念:可以根据状态变量去选择被执行函数,而不用条件语句或case语句.这种设 ...
- [ZZ] C++ pair
Pair类型概述 pair是一种模板类型,其中包含两个数据值,两个数据的类型可以不同,基本的定义如下: pair<int, string> a; 表示a中有两个类型,第一个元素是int型的 ...
- Web Api 2 怎么支持 Session
Add protected void Application_PostAuthorizeRequest() { System.Web.HttpContext.Current.SetSessionSta ...