B. Dreamoon and Sets
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Dreamoon likes to play with sets, integers and . is defined as the largest positive integer that divides both a and b.

Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements si, sj from S, .

Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution.

Input

The single line of the input contains two space separated integers n, k (1 ≤ n ≤ 10 000, 1 ≤ k ≤ 100).

Output

On the first line print a single integer — the minimal possible m.

On each of the next n lines print four space separated integers representing the i-th set.

Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them.

Sample test(s)
Input
1 1
Output
5
1 2 3 5
Input
2 2
Output
22
2 4 6 22
14 18 10 16
Note

For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since .

题意: 给你任意n,k,要你求出n组gcd(si,sj)=k的四个元素的组合.........

其实对于gcd(a,b)=k,我们只需要求出gcd(a,b)=1;然后进行gcd(a,b)*k=k;

不难发现这些数是固定不变的而且还有规律可循,即1,2,3,5    7 8 9 11   13 14 15 17   每一个段直接隔着2,段内前3个连续,后一个隔着2.....

代码:

 #include<cstdio>
#include<cstring>
using namespace std;
const int maxn=;
__int64 ans[maxn][];
void work()
{
__int64 k=;
for(int i=;i<;i++)
{
ans[i][]=k++;
ans[i][]=k++;
ans[i][]=k++;
ans[i][]=++k;
k+=;
}
}
int main()
{
int n,k;
work();
while(scanf("%d%d",&n,&k)!=EOF)
{
printf("%I64d\n",ans[n-][]*k);
for(int i=;i<n;i++)
printf("%I64d %I64d %I64d %I64d\n",ans[i][]*k,ans[i][]*k,ans[i][]*k,ans[i][]*k);
}
return ;
}

cf(#div1 B. Dreamoon and Sets)(数论)的更多相关文章

  1. cf(#div1 A. Dreamoon and Sums)(数论)

    A. Dreamoon and Sums time limit per test 1.5 seconds memory limit per test 256 megabytes input stand ...

  2. codeforces 477B B. Dreamoon and Sets(构造)

    题目链接: B. Dreamoon and Sets time limit per test 1 second memory limit per test 256 megabytes input st ...

  3. Codeforces Round #272 (Div. 2) D. Dreamoon and Sets 构造

    D. Dreamoon and Sets 题目连接: http://www.codeforces.com/contest/476/problem/D Description Dreamoon like ...

  4. CF 984C Finite or not? (数论)

    CF 984C Finite or not? (数论) 给定T(T<=1e5)组数据,每组数据给出十进制表示下的整数p,q,b,求问p/q在b进制意义下是否是有限小数. 首先我们先把p/q约分一 ...

  5. 【CODEFORCES】 B. Dreamoon and Sets

    B. Dreamoon and Sets time limit per test 1 second memory limit per test 256 megabytes input standard ...

  6. Codeforces Round #272 (Div. 2) D.Dreamoon and Sets 找规律

    D. Dreamoon and Sets   Dreamoon likes to play with sets, integers and .  is defined as the largest p ...

  7. D. Dreamoon and Sets(Codeforces Round #272)

    D. Dreamoon and Sets time limit per test 1 second memory limit per test 256 megabytes input standard ...

  8. cf 450b 矩阵快速幂(数论取模 一大坑点啊)

    Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...

  9. cf 645F Cowslip Collections 组合数学 + 简单数论

    http://codeforces.com/contest/645/problem/F F. Cowslip Collections time limit per test 8 seconds mem ...

随机推荐

  1. Examples For When-Validate-Item trigger In Oracle Forms

    The following example finds the commission plan in the COMMPLAN table, based on the current value of ...

  2. hdu 2196 Computer 树的直径

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem ...

  3. CSS深入研究:display的恐怖故事解密(2) - table-cell(转)

    http://www.cnblogs.com/StormSpirit/archive/2012/10/24/2736453.html 上集<CSS深入研究:display的恐怖故事解密(1) - ...

  4. android tablelayout 显示图片

    当在tablelayout中显示图片时,设置imageView为固定大小时,会出现divide by zero 错误 将LayoutParams 改为 TableRow.LayoutParams即可 ...

  5. 不含类解决最后一个li边距问题

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. iOS - OC NSDictionary 字典

    前言 @interface NSDictionary<__covariant KeyType, __covariant ObjectType> : NSObject <NSCopyi ...

  7. for循环的嵌套

    循环的四要素:初始条件,循环条件,循环体,状态改变. 打印左下角是直角的三角形: 打印左上角为直角的三角形: 打印右上角为直角的三角形: 打印右下角为直角的三角形: 99口诀表:

  8. ip地址的组成(网络位+主机位)

    IP地址子网掩码都是32位的2进制,为了方便记忆转成10进制,通过子网掩码来区分网络位和主机位,子网掩码跟IP地址一一对应,子网掩码为1的是网络位,为0的是主机位.如:192.168.1.2 掩码25 ...

  9. 一些比较好的shellscript脚本

    1. 变量与替换 #!/bin/bash # 变量替换 # 另外, 变量替换还有许多别的语法 # 例如, b=${a/23/bb} 将 23 替换成 bb 等等, 用到时再找 a=375 hello= ...

  10. FLAG_ACTIVITY_CLEAR_TOP和FLAG_ACTIVITY_REORDER_TO_FRONT用法

    Activity的两种启动模式: FLAG_ACTIVITY_CLEAR_TOP和FLAG_ACTIVITY_REORDER_TO_FRONT 1. 如果已经启动了四个Activity:A,B,C和D ...