我们平时经常会有一些数据运算的操作,需要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是如何实现的?就拿最常用的sqrt函数来说吧,系统怎么来实现这个经常调用的函数呢?

虽然有可能你平时没有想过这个问题,不过正所谓是“临阵磨枪,不快也光”,你“眉头一皱,计上心来”,这个不是太简单了嘛,用二分的方法,在一个区间中,每次拿中间数的平方来试验,如果大了,就再试左区间的中间数;如果小了,就再拿右区间的中间数来试。比如求sqrt(16)的结果,你先试(0+16)/2=8,8*8=64,64比16大,然后就向左移,试(0+8)/2=4,4*4=16刚好,你得到了正确的结果sqrt(16)=4。然后你三下五除二就把程序写出来了:

//用二分法
float SqrtByBisection(float n)
{
//小于0的按照你需要的处理
if(n < )
return n;
float mid,last;
float low,up;
low=,up=n;
mid=(low+up)/;
do
{
if(mid*mid>n)
up=mid;
else
low=mid;
last=mid;
mid=(up+low)/;
}
//精度控制
while(abs(mid-last) > eps);
return mid;
}

然后看看和系统函数性能和精度的差别(其中时间单位不是秒也不是毫秒,而是CPU Tick,不管单位是什么,统一了就有可比性)。二分法和系统的方法结果上完全相同,但是性能上整整差了几百倍。为什么会有这么大的区别呢?难道系统有什么更好的办法?难道。。。。哦,对了,回忆下我们曾经的高数课,曾经老师教过我们“牛顿迭代法快速寻找平方根”,或者这种方法可以帮助我们,具体步骤如下。

求出根号a的近似值:首先随便猜一个近似值x,然后不断令x等于x和a/x的平均数,迭代个六七次后x的值就已经相当精确了。例如,我想求根号2等于多少。假如我猜测的结果为4,虽然错的离谱,但你可以看到使用牛顿迭代法后这个值很快就趋近于根号2了:

(         + /        ) /  = 2.25
( 2.25 + /2.25 ) / = 1.56944..
( 1.56944..+ /1.56944..) / = 1.42189..
( 1.42189..+ /1.42189..) / = 1.41423..
....

这种算法的原理很简单,我们仅仅是不断用(x,f(x))的切线来逼近方程x^2-a=0的根。根号a实际上就是x^2-a=0的一个正实根,这个函数的导数是2x。也就是说,函数上任一点(x,f(x))处的切线斜率是2x。那么,x-f(x)/(2x)就是一个比x更接近的近似值。代入 f(x)=x^2-a得到x-(x^2-a)/(2x),也就是(x+a/x)/2。

相关的代码如下:

float SqrtByNewton(float x)
{
// 最终
float val = x;
// 保存上一个计算的值
float last;
do
{
last = val;
val =(val + x/val) / ;
}
while(abs(val-last) > eps);
return val;
}

牛顿迭代法性能提高了很多,可是和系统函数相比,还是有这么大差距,这是为什么呀?想啊想啊,想了很久仍然百思不得其解。突然有一天,我在网上看到一个神奇的方法,于是就有了今天的这篇文章,废话不多说,看代码先:

float InvSqrt(float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x; // get bits for floating VALUE
i = 0x5f375a86- (i>>); // gives initial guess y0
x = *(float*)&i; // convert bits BACK to float
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
return /x;
}

这次真的是质变了,结果竟然比系统的还要好。到现在你是不是还不明白那个“鬼函数”,到底为什么速度那么快吗?不急,先看看下面的故事吧:

Quake-III Arena (雷神之锤3)是90年代的经典游戏之一。该系列的游戏不但画面和内容不错,而且即使计算机配置低,也能极其流畅地运行。这要归功于它3D引擎的开发者约翰-卡马克(John Carmack)。事实上早在90年代初DOS时代,只要能在PC上搞个小动画都能让人惊叹一番的时候,John Carmack就推出了石破天惊的Castle Wolfstein, 然后再接再励,doom, doomII, Quake...每次都把3-D技术推到极致。他的3D引擎代码资极度高效,几乎是在压榨PC机的每条运算指令。当初MS的Direct3D也得听取他的意见,修改了不少API。

最近,QUAKE的开发商ID SOFTWARE 遵守GPL协议,公开了QUAKE-III的原代码,让世人有幸目睹Carmack传奇的3D引擎的原码。这是QUAKE-III原代码的下载地址: http://www.fileshack.com/file.x?fid=7547。我们知道,越底层的函数,调用越频繁。3D引擎归根到底还是数学运算。那么找到最底层的数学运算函数(在game/code/q_math.c), 必然是精心编写的。里面有很多有趣的函数,很多都令人惊奇,估计我们几年时间都学不完。在game/code/q_math.c里发现了这样一段代码。它的作用是将一个数开平方并取倒,经测试这段代码比(float)(1.0/sqrt(x))快4倍:

float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F; x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> ); // what the fuck?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM
#ifdef __linux__
assert( !isnan(y) ); // bk010122 - FPE?
#endif
#endif
return y;
}

函数返回1/sqrt(x),这个函数在图像处理中比sqrt(x)更有用。注意到这个函数只用了一次叠代!(其实就是根本没用叠代,直接运算)。编译,实验,这个函数不仅工作的很好,而且比标准的sqrt()函数快4倍!要知道,编译器自带的函数,可是经过严格仔细的汇编优化的啊!

这个简洁的函数,最核心,也是最让人费解的,就是标注了“what the fuck?”的一句:i = 0x5f3759df - ( i >> 1 );

再加上y = y * ( threehalfs - ( x2 * y * y ) );

两句话就完成了开方运算!而且注意到,核心那句是定点移位运算,速度极快!特别在很多没有乘法指令的RISC结构CPU上,这样做是极其高效的。

算法的原理其实不复杂,就是牛顿迭代法,用x-f(x)/f'(x)来不断的逼近f(x)=a的根。

没错,一般的求平方根都是这么循环迭代算的但是卡马克(quake3作者)真正牛B的地方是他选择了一个神秘的常数0x5f3759df 来计算那个猜测值,就是我们加注释的那一行,那一行算出的值非常接近1/sqrt(n),这样我们只需要2次牛顿迭代就可以达到我们所需要的精度。好吧如果这个还不算NB,接着看:

普渡大学的数学家Chris Lomont看了以后觉得有趣,决定要研究一下卡马克弄出来的这个猜测值有什么奥秘。Lomont也是个牛人,在精心研究之后从理论上也推导出一个最佳猜测值,和卡马克的数字非常接近, 0x5f37642f。卡马克真牛,他是外星人吗?

传奇并没有在这里结束。Lomont计算出结果以后非常满意,于是拿自己计算出的起始值和卡马克的神秘数字做比赛,看看谁的数字能够更快更精确的求得平方根。结果是卡马克赢了... 谁也不知道卡马克是怎么找到这个数字的。

最后Lomont怒了,采用暴力方法一个数字一个数字试过来,终于找到一个比卡马克数字要好上那么一丁点的数字,虽然实际上这两个数字所产生的结果非常近似,这个暴力得出的数字是0x5f375a86。

Lomont为此写下一篇论文,"Fast Inverse Square Root"。 论文下载地址:http://www.math.purdue.edu/~clomont/Math/Papers/2003/InvSqrt.pdf ,http://www.matrix67.com/data/InvSqrt.pdf。

最后,给出最精简的1/sqrt()函数:

float InvSqrt(float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x; // get bits for floating VALUE
i = 0x5f375a86- (i>>); // gives initial guess y0
x = *(float*)&i; // convert bits BACK to float
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
return x;
}

大家可以尝试在PC机、51、AVR、430、ARM、上面编译并实验,惊讶一下它的工作效率。

前两天有一则新闻,大意是说 Ryszard Sommefeldt 很久以前看到这么样的一段 code (可能出自 Quake III 的 source code):

float InvSqrt (float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x;
i = 0x5f3759df - (i>>);
x = *(float*)&i;
x = x*(1.5f - xhalf*x*x);
return x;
}

他一看之下惊为天人,想要拜见这位前辈高人,但是一路追寻下去却一直找不到人;同时间也有其他人在找,虽然也没找到出处,但是 Chris Lomont 写了一篇论文 (in PDF) 解析这段 code 的算法 (用的是 Newton’s Method,牛顿法;比较重要的是后半段讲到怎么找出神奇的 0x5f3759df 的)。

PS. 这个 function 之所以重要,是因为求 开根号倒数 这个动作在 3D 运算 (向量运算的部份) 里面常常会用到,如果你用最原始的 sqrt() 然后再倒数的话,速度比上面的这个版本大概慢了四倍吧… XD

PS2. 在他们追寻的过程中,有人提到一份叫做 MIT HACKMEM 的文件,这是 1970 年代的 MIT 强者们做的一些笔记 (hack memo),大部份是 algorithm,有些 code 是 PDP-10 asm 写的,另外有少数是 C code (有人整理了一份列表)。

好了,故事就到这里结束了,希望大家能有有收获:)

原文链接: http://www.nowamagic.net/algorithm/algorithm_EfficacyOfFunctionSqrt.php

[转载]求平方根sqrt()函数的底层算法效率问题的更多相关文章

  1. 【转载】一个Sqrt函数引发的血案

    转自:http://www.cnblogs.com/pkuoliver/archive/2010/10/06/sotry-about-sqrt.html 源码下载地址:http://diducoder ...

  2. [转载]ORACLE日期时间函数大全

    ORACLE日期时间函数大全 TO_DATE格式(以时间:2007-11-02   13:45:25为例)           Year:              yy two digits 两位年 ...

  3. sqrt函数实现(神奇的算法)

    我们平时经常会有一些数据运算的操作,需要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是如何实现的?就拿最常用的sqrt函数来说吧,系统怎么来实现这个经常调用的函数呢? 虽然 ...

  4. C++版 - Leetcode 69. Sqrt(x) 解题报告【C库函数sqrt(x)模拟-求平方根】

    69. Sqrt(x) Total Accepted: 93296 Total Submissions: 368340 Difficulty: Medium 提交网址: https://leetcod ...

  5. 求平方根算法 Heron’s algorithm

    求平方根问题 概述:本文介绍一个古老但是高效的求平方根的算法及其python实现,分析它为什么可以快速求解,并说明它为何就是牛顿迭代法的特例. 问题:求一个正实数的平方根. 给定正实数 \(m\),如 ...

  6. [LeetCode] Sqrt(x) 求平方根

    Implement int sqrt(int x). Compute and return the square root of x. 这道题要求我们求平方根,我们能想到的方法就是算一个候选值的平方, ...

  7. sqrt()平方根计算函数的实现2——牛顿迭代法

    牛顿迭代法: 牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特 ...

  8. quake3中求1/sqrt(x)的算法源代码

    quake3中求1/sqrt(x)的算法源代码如下(未作任何修改): float Q_rsqrt( float number ) { long i; float x2, y; const float ...

  9. 141. Sqrt(x)【牛顿迭代法求平方根 by java】

    Description Implement int sqrt(int x). Compute and return the square root of x. Example sqrt(3) = 1 ...

随机推荐

  1. angular.foreach 循环方法使用指南

    angular有自己的生命周期.循环给一个 angular监听的变量复值时.最好还是用angular自带的循环方法.“angular.foreach” },{a:}]; angular.forEach ...

  2. EnCase v7 could not recognize Chinese character folder names / file names on Linux Platform

    Last week my friend brought me an evidence file duplicated from a Linux server, which distribution i ...

  3. CentOS 6.x 播放 mp3 音乐 —— 成功

    参考:http://blog.chinaunix.net/uid-14735472-id-3472898.html centos 6.x  添加 rpmforge 源--- CentOS 6.x 安装 ...

  4. 将base64格式的字符串生成文件

    using System; using System.IO; namespace ConsoleApplication1 { class Program { static void Main(stri ...

  5. 开源自己的一个小android项目(美女撕衣服游戏)

    这是自己的一个开源自己的一个小android项目(美女撕衣服游戏),也是前6个月开发的,有部分的资源来自网络上的,现在开源出来给大家吧,由于源码比较大,不上传了,我已经上传到源码天堂那个网站那里了,大 ...

  6. 在PHP项目中使用Standford Moss代码查重系统

    Standford Moss 系统是斯坦福大学大名鼎鼎的代码查重系统,它可以查出哪些同学提交的代码是抄袭别人的,从而将提交结果拒之门外.它对一切希望使用该系统的人都是开放的,那么在PHP的项目中如何使 ...

  7. [原创] 初识Agile/CMMI/Scrum

    一.背景介绍 在朋友(aehyok)的建议下,初步去了解Visual Studio Online,简称VS Online(即原来的 Team Foundation Service,简称TFS) VS ...

  8. getComputedStyle(and currentStyle)

    1.getComputedStyle 1.1 用法: currentStyle获取计算后的样式,也叫当前样式.最终样式.优点:可以获取元素的最终样式,包括浏览器的默认值,而不像style只能获取行间样 ...

  9. Nginx+Tomcat+Memcached集群

    Tomcat集群session同步方案有以下几种方式: 使用tomcat自带的cluster方式,多个tomcat间自动实时复制session信息,配置起来很简单.但这个方案的效率比较低,在大并发下表 ...

  10. Ubuntu14.04安装GNOME3桌面

    以下是安装方法: sudo add-apt-repository ppa:gnome3-team/gnome3 sudo apt-get update sudo apt-get dist-upgrad ...