Coloring Trees

Problem Description:

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.

Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.

ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, j litres of paint.

The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7 contiguous groups of the same color : {2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.

ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.

Please note that the friends can't color the trees that are already colored.

Input:

The first line contains three integers, n, m and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.

Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j (1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color j. pi, j's are specified even for the initially colored trees, but such trees still can't be colored.

Output:

Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print  - 1.

Sample Input:

3 2 2

0 0 0

1 2

3 4

5 6

Sample Output:

10

这是后来补上的,为什么我做dp的时候就是想不到公式呢?还应该多做dp啊

【题目链接】Codeforces 711C

【题目类型】dp

&题意:

先给你n颗树,有m种颜色,你要把所以的数都涂色,色是[1,m],0代表没有色,只有当这颗树是0的时候你才可以涂色,并且你涂完色的树必须要满足正好是k段,涂每个树的颜色都有不同的花费,给你这些数据,你要输出最小花费,不可行是输出-1。

&题解:

首先看范围100,因为这是cf评测的,所以n^4可过,并且能开三维数组,那么就可以dp了。

dp[i][j][k]:表示考虑第i棵树涂第j种颜色,当前分为k组的最小花费

写dp,先写初始条件,之后找方程,判断状态,最后选最小值输出就好了

【时间复杂度】O(n^4)

&代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
#define cle(a,val) memset(a,(val),sizeof(a))
#define SI(N) scanf("%d",&(N))
#define SI2(N,M) scanf("%d %d",&(N),&(M))
#define SI3(N,M,K) scanf("%d %d %d",&(N),&(M),&(K))
#define rep(i,b) for(int i=0;i<(b);i++)
#define rez(i,a,b) for(int i=(a);i<=(b);i++)
const ll LINF = 0x3f3f3f3f3f3f3f3f;
const int MAXN = 100 + 5 ;
int n, m, k, p[MAXN][MAXN], a[MAXN];
ll dp[MAXN][MAXN][MAXN];
void Solve() {
while (~SI3(n, m, k)) {
rez(i, 1, n)SI(a[i]);
rez(i, 1, n) rez(j, 1, m)SI(p[i][j]);
cle(dp, 0x3f);
if (a[1]) dp[1][a[1]][1] = 0;
else rez(i, 1, m) dp[1][i][1] = p[1][i];
rez(i, 2, n) rez(j, 1, m) rez(u, 1, k) if (dp[i - 1][j][u] < LINF) {
if (a[i])dp[i][a[i]][u + (a[i] != j)] = min(dp[i][a[i]][u + (a[i] != j)], dp[i - 1][j][u]);
else rez(v, 1, m) dp[i][v][u + (v != j)] = min(dp[i][v][u + (v != j)], dp[i - 1][j][u] + p[i][v]);
}
ll re = LINF;
rez(i, 1, m)
re = min(re, dp[n][i][k]);
if (re == LINF) re = -1;
cout << re << endl;
}
}
int main() {
Solve();
return 0;
}

Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)的更多相关文章

  1. Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)

    C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  2. Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)

    题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...

  3. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

  4. Codeforces Round #369 (Div. 2) C. Coloring Trees 动态规划

    C. Coloring Trees 题目连接: http://www.codeforces.com/contest/711/problem/C Description ZS the Coder and ...

  5. Codeforces Round #369 (Div. 2) C. Coloring Trees DP

    C. Coloring Trees   ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...

  6. Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)

    题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...

  7. Codeforces Round #369 (Div. 2)-C Coloring Trees

    题目大意:有n个点,由m种颜料,有些点没有涂色,有些点已经涂色了,告诉你每个点涂m种颜色的价格分别是多少, 让你求将这n个点分成k段最少需要多少钱. 思路:动态规划,我们另dp[ i ][ j ][ ...

  8. Codeforces Round #245 (Div. 1) B. Working out (dp)

    题目:http://codeforces.com/problemset/problem/429/B 第一个人初始位置在(1,1),他必须走到(n,m)只能往下或者往右 第二个人初始位置在(n,1),他 ...

  9. Codeforces Round #260 (Div. 1) 455 A. Boredom (DP)

    题目链接:http://codeforces.com/problemset/problem/455/A A. Boredom time limit per test 1 second memory l ...

随机推荐

  1. 如何生成a1,a2,a3,a4这样的变量名

    var num=6; function Girl(beautifulScore){ this.beautifulScore=beautifulScore; } var girls=[]; for (v ...

  2. tomcat的配置详解:[1]tomcat绑定域名

    转自:http://jingyan.baidu.com/article/7e440953dc096e2fc0e2ef1a.html tomcat的配置详解:[1]tomcat绑定域名分步阅读 在jav ...

  3. Linux驱动设计—— 驱动调试技术

    参考博客与书籍: <Linux设备驱动开发详解> <Linux设备驱动程序> http://blog.chinaunix.net/uid-24219701-id-2884942 ...

  4. java的nio之:java的nio系列教程之DatagramChannel

    Java NIO中的DatagramChannel是一个能收发UDP包的通道.因为UDP是无连接的网络协议,所以不能像其它通道那样读取和写入.它发送和接收的是数据包. 打开 DatagramChann ...

  5. vsftp虚拟用户配置

    找了很久,终于找到像样一点的文章,很详细,参数方面懂英文基本能看懂,一个教程是否有用,关键在于细节.错了一点点就不能配下去了. ------------------------------------ ...

  6. php特殊语法--模板引擎中比较常见

    <?php $a=array(1,2,0); foreach ($a as $v): if($v>1): ?> 5 <?php endif; endforeach; ?> ...

  7. javascript体系 DOM原理

    解释清楚DOM原理并不是一件容易的事,但是任何一个前端工程师,都必须牢牢掌握它. DOM整体架构: 图解: DOM,即针对XML文档的应用程序编程接口(API).通俗一点说,HTML属于XML的一种, ...

  8. 自定义Mvc5 Owin 验证

    public class AuthIn : IUserAuthenticate { public static ApplicationUserManager UserManager { get { r ...

  9. make与makefile

    Linux makefile 教程 非常详细,且易懂 make与makefile GNU make体系Linux 环境下的程序员如果不会使用GNU make来构建和管理自己的工程,应该不能算是一个合格 ...

  10. 图片加载js类库

    Picturefill Picturefill.WP插件利用picturefill.js脚本展示Responsive图片,即根据视口宽度选择尺寸合适的图片加载,节省带宽,提高网站载入速度.例如用户用手 ...