[复变函数]第06堂课 2.1 解析函数的概念与 Cauchy-Riemann 方程 (续)
2. 解析函数及其简单性质
(1) 定义:
a. 若 $w=f(z)$ 在区域 $D$ 内可微, 则称 $f$ 在 $D$ 内解析;
b. 若 $w=f(z)$ 在 $z_0$ 处的某邻域内解析, 则称 $f$ 在 $z_0$ 处解析;
c. 若 $f$ 在闭域 $\bar D$ 的某个邻域内解析, 则称 $f$ 在 $\bar D$ 上解析;
d. 若 $f$ 在 $z_0$ 处不解析 ($\forall\ \rho>0,\ \exists\ z\in U_\rho(z_0),\st f$ 在 $z$ 处不解析), 但在任一邻域内都有 $f$ 的解析点, 则称 $z_0$ 为 $f$ 的奇点. 例如: $f(z)=\cfrac{1}{z}$.
(2) 注记:
a. 以后所指的解析函数容许奇点.
b. 与实函数的区别: 实可微 (点 $\rra$ 区间); 复解析 (区域 $\rra$ 点).
c. 与实函数的联系: 四则运算、链式法则 ($(g\circ f)'=g'\circ f'$).
3. Cauchy-Riemann 方程
(1) 引言: $$\beex \bea &\quad w=f(z)=u(x,y)+iv(x,y),\quad z=x+iy\ &\ra f'(z)=?,\quad \lap z=\lap x+i\lap y. \eea \eeex$$ 解答: $$\beex \bea f'(z)&=\lim_{\lap z\to 0}\frac{f(z+\lap z)-f(z)}{\lap z}\\ &=\lim_{(\lap x,\lap y)\to 0} \frac{ [u(x+\lap x,y+\lap y)-u(x,y)]+i[v(x+\lap x,y+\lap y)-v(x,y)] }{ \lap x+i\lap y }. \eea \eeex$$ 当 $\lap y=0$ 时, $$\beex \bea f'(z)&=\lim_{\lap x\to 0}\frac{[u(x+\lap x,y)-u(x,y)]+i[v(x+\lap x,y)-v(x,y)]}{\lap x}\\ &=u_x+iv_x; \eea \eeex$$ 当 $\lap x=0$ 时, $$\beex \bea f'(z)&=\lim_{\lap y\to 0}\frac{ [u(x,y+\lap y)-u(x,y)]+i[v(x,y+\lap y)-v(x,y)] }{i\lap y}\\ &=\frac{1}{i}(u_y+iv_y)\\ &=v_y-iu_y. \eea \eeex$$ 于是, $$\bex u_x+iv_x=f'(z)=v_y-iu_y\ra u_x=v_y,\ u_y=-v_x. \eex$$
(2) 称 $u_x=v_y,\ u_y=-v_x$ 为 Cauchy-Riemann (C-R) 方程.
(3) 可微的必要条件: $$\bex f=u+iv\mbox{ 在 }z_0\mbox{ 处可微}\ra \sedd{\ba{ll} u_x,u_y,v_x,v_y\mbox{ 在 }(x_0,y_0)\mbox{ 处存在}\\ C-R\mbox{ 方程} \ea}. \eex$$
(4) 可微的充要条件: $$\bex f=u+iv\mbox{ 在 }z_0\mbox{ 处可微}\lra \sedd{\ba{ll} u,v\mbox{ 在 }(x_0,y_0)\mbox{ 可微}\\ C-R\mbox{ 方程} \ea}. \eex$$
(5) 可微的充分条件: $$\bex f=u+iv\mbox{ 在 }z_0\mbox{ 处可微}\Leftarrow \sedd{\ba{ll} u_x,u_y,v_x,v_y\mbox{ 在 }(x_0,y_0)\mbox{ 存在且连续}\\ C-R\mbox{ 方程} \ea}. \eex$$
(6) 解析的必要条件: $$\bex f\mbox{ 在区域 }D\mbox{ 内解析}\ra \sedd{\ba{ll} u_x,u_y,v_x,v_y\mbox{ 在区域 }D\mbox{ 内存在}\\ C-R\mbox{ 方程} \ea}. \eex$$
(7) 解析的充要条件: $$\bex f\mbox{ 在区域 }D\mbox{ 内解析}\lra \sedd{\ba{ll} u,v\mbox{ 在区域 }D\mbox{ 可微}\\ C-R\mbox{ 方程}\ea} \eex$$
(8) 解析的充分条件: $$\bex f\mbox{ 在区域 }D\mbox{ 内解析}\Leftarrow \sedd{\ba{ll} u_x,u_y,v_x,v_y\mbox{ 在区域 }D\mbox{ 内存在且连续}\\ C-R\mbox{ 方程} \ea} \eex$$
(9) 例子:
a. $f(z)=|z|^2$ 解析不?
b. $f(z)=x^2-iy^2$ 解析不?
c. $f(z)=e^x(\cos y+i\sin y)$ 解析不? 如果解析, 求出 $f'(z)$.
d. 设 $f=u+iv$ 解析, 试证: 曲线 $u(x,y)=c_1, v(x,y)=c_2$ 正交.
作业: P 90 T 5 (3) , T 8 (1) .
[复变函数]第06堂课 2.1 解析函数的概念与 Cauchy-Riemann 方程 (续)的更多相关文章
- [复变函数]第15堂课 4.3 解析函数的 Taylor 展式
1. Taylor 定理: 设 $f(z)$ 在 $K:|z-a|<R$ 内解析, 则 $$\bee\label{15:taylor} f(z)=\sum_{n=0}^\infty c_n(z ...
- [复变函数]第17堂课 5 解析函数的 Laurent 展式与孤立奇点 5. 1 解析函数的 Laurent 展式
0. 引言 (1) $f$ 在 $|z|<R$ 内解析 $\dps{\ra f(z)=\sum_{n=0}^\infty c_nz^n}$ (Taylor 级数). (2) $f$ 在 $ ...
- [复变函数]第05堂课 1.4 复球面与 $\infty$; 作业讲解; 2 解析函数 2.1 解析函数的概念与 Cauchy-Riemann 方程
1. 复球面 大漠孤烟直, 长河落日圆. $$\bex \bbC\cong \bbS^2\bs \sed{N},\quad \bbC_\infty=\bbC\cup \sed{\infty}\mbox ...
- [复变函数]第11堂课 3.3 Cauchy 积分定理及其推论
0. 引言 (1) Cauchy 积分定理: 设 $D$ 为 $(n+1)$ 连通区域, $f$ 在 $D$ 内解析且连续到边界 $C$, 则 $\dps{\int_C f(\zeta)\rd \ze ...
- [复变函数]第10堂课 3.2 Cauchy 积分定理
0. 引言 (1) $\dps{\int_{|z-a|=\rho}\frac{1}{z-a}\rd z=2\pi i\neq 0}$: 有奇点 (在 $|z|>0$: 二连通区域内解析), 周线 ...
- 《程序员的思维修炼:开发认知潜能的九堂课》【PDF】下载
<程序员的思维修炼:开发认知潜能的九堂课>[PDF]下载链接: https://u253469.ctfile.com/fs/253469-231196325 内容简介 运用一门程序设计语言 ...
- Python学习第五堂课
Python学习第五堂课推荐电影:华尔街之狼 被拯救的姜哥 阿甘正传 辛德勒的名单 肖申克的救赎 上帝之城 焦土之城 绝美之城 #上节内容: 变量 if else 注释 # ""& ...
- 大神教你零基础学PS,30堂课从入门到精通
ps视频教程,ps自学视频教程.ps免费视频教程下载,大神教你零基础学PS教程视频内容较大,分为俩部分: 大神教你零基础学PS--30堂课从入门到精通第一部分:百度网盘,https://pan.bai ...
- C语言学习书籍推荐《学通C语言的24堂课》下载
下载地址:点我 编辑推荐 <学通C语言的24堂课>:用持续激励培养良好习惯以良好习惯铸就伟大梦想——致亲爱的读者朋友在开始学习<学通C语言的24堂课>的同时,强烈建议读者朋友同 ...
随机推荐
- Java Web学习(1): 客户端请求、服务器响应及其HTTP状态码
一JSP客户端请求 当浏览器请求一个网页时,它会向网络服务器发送一系列不能被直接读取的信息,因为这些信息是作为HTTP信 息头的一部分来传送的.我们可以查阅HTTP协议来获得更多的信息. 下表列出了浏 ...
- 利用caffe生成 lmdb 格式的文件,并对网络进行FineTuning
利用caffe生成 lmdb 格式的文件,并对网络进行FineTuning 数据的组织格式为: 首先,所需要的脚本指令路径为: /home/wangxiao/Downloads/caffe-maste ...
- JSBinding + SharpKit / 实战:转换 Survival Shooter
从 asset store 下载 Survival Shooter (商店里有2个版本,一种是给Unity5用的,一个是给Unity4.6用的,我们这个实验用的是后者,版本是2.2.如果) 1 删除多 ...
- 使用latencytop深度了解你的系统的延迟(转)
转载自系统技术非业余研究 http://blog.yufeng.info/archives/1239 我们在系统调优或者定位问题的时候,经常会发现多线程程序的效率很低,但是又不知道问题出在哪里,就知道 ...
- jquery easyui DataGrid
Easyui Demo网站: http://www.jeasyui.com/ 英文 http://www.phptogether.com/juidoc/ 中文 datagrip的基本属性方法:ht ...
- openssh
http://www.openssh.com/ OpenSSH is a FREE version of the SSH connectivity tools that technical users ...
- unity,standalone下自定义分辨率不起作用的解法
写一个Editor脚本AddMenu.cs:using UnityEditor; using UnityEngine; public class AddMenu : EditorWindow { [M ...
- C语言的几种取整方法
C语言的几种取整方法 来源:http://blog.sina.com.cn/s/blog_4c0cb1c001013ha9.html 1.直接赋值给整数变量.如: int i = 2.5; 或 i = ...
- 在线网络速度测试JAVA程序(一):思路和控制台主程序【转】
来源:http://hancool.blog.51cto.com/1836252/1352228 事情的缘由 因上级公司的信息化主管部门经常被投诉说是各种业务应用系统反映系统使用慢的问题,而都把问题归 ...
- Android 异步加载解决方案
Android的Lazy Load主要体现在网络数据(图片)异步加载.数据库查询.复杂业务逻辑处理以及费时任务操作导致的异步处理等方面.在介绍Android开发过程中,异步处理这个常见的技术问题之前, ...