hiho_1087_哈密顿环
题目
在一个有向图上,从一点A出发,经过所有除A的顶点一次且仅经过一次,最后到达起始点A,所形成的路径为哈密顿环。两个哈密顿环不同,当且仅当路径上的任意一个顶点P的下一个顶点不同。
给出一个顶点数目为 <= 12, 边的数目 <= 200(有可能有重边)的有向图的所有可能的哈密顿环的总数。
分析
哈密顿环经过所有的顶点,因此可以从任何一个顶点出发(在程序中就选择起始点为节点0);如果两个顶点之间有重边,那么这些重边对于哈密顿环是等价的,因此在构建图的时候,要去重边。
使用深度优先搜索可以求出所有哈密顿环的总数,但是估算一个复杂度: 假设每个顶点都连接其他10个顶点,那么深度优先搜索复杂度约 10^10,不能接受。因此可以考虑使用记忆化搜索结合状态压缩:
1、状态用两个维度表示:(1)经过路径(从某个点开始到达节点0)上所覆盖的点;(2)经过的路径的起始点。
2、最多一共12个点,可以用一个整数的低12个比特表示经过的路径中这12个点是否被经过。因此使用 dp[status_to_visit][node] 表示从节点node开始,经过的节点的位图为 status_to_visit ,最终到达节点0所有不同的路径的总数。
利用记忆化深度优先搜索,求出最终的结果.
明确状态很重要,计算清楚边界状态很重要!
明确状态很重要,计算清楚边界状态很重要!
明确状态很重要,计算清楚边界状态很重要!
实现
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<unordered_map>
#include<list>
#include<string>
#include<string.h>
#include<set>
using namespace std;
int dp[8200][13];
//dp[status][node] 表示从node出发,最终到达点0,遍历的点的状态形成 status 时可以走的路径数目
bool connected[13][13];
struct Edge{
int to;
int next;
};
Edge gEdges[220];
int gEdgeIndex;
int gHead[13];
bool gVisited[13];
void InsertEdge(int u, int v){
if (connected[u][v]) //如果两个节点A和B之间有多条边直接从A连接到B,则只记录一次
return;
connected[u][v] = true;
int e = gEdgeIndex++;
gEdges[e].to = v;
gEdges[e].next = gHead[u];
gHead[u] = e;
} void Init(){
gEdgeIndex = 0;
memset(gEdges, -1, sizeof(gEdges));
memset(gHead, -1, sizeof(gHead));
memset(dp, -1, sizeof(dp));
memset(connected, false, sizeof(connected));
memset(gVisited, false, sizeof(gVisited));
} //用记忆化搜索实现 动态规划
//从node开始,经过的各个节点的位图为 status_to_visit,status_to_visit 中的各个节点经过
//且只经过一次,最终到达节点0. 所有可能的路径总数
int Dfs(int status_to_visit, int node){
if (dp[status_to_visit][node] != -1)
return dp[status_to_visit][node]; //当前节点之前被访问过一次
if ((status_to_visit & (1 << node)) == 0)
return dp[status_to_visit][node] = 0; int result = 0;
for (int e = gHead[node]; e != -1; e = gEdges[e].next){
int v = gEdges[e].to;
int new_status = status_to_visit & (~(1 << node));
result += Dfs(new_status, v);
}
return dp[status_to_visit][node] = result;
} int main(){
int n, m, u, v;
Init();
scanf("%d %d", &n, &m);
for (int i = 0; i < m; i++){
scanf("%d %d", &u, &v);
InsertEdge(u - 1, v - 1);
}
//初始状态,从0节点开始,最终到达节点0. status_to_visit = 0 是应为要从0开始到达0,
//在开始的时候,位图为 111111,递归到下一层时为 111110.到最后再到达0时候的status_to_visit 为 000000
dp[0][0] = 1;
int result = Dfs((1 << n) - 1, 0);
printf("%d\n", result);
return 0;
}
hiho_1087_哈密顿环的更多相关文章
- NPC
这里的想说的NPC不是Non-Player-Controled,非玩家控制角色,而是Non-determinisitc Polynomial complete problem,它属于一类很特殊的问题, ...
- NOIP算法总结与复习
NOIP算法总结与复习 (看了看李总的蓝皮书,收获颇多,记下此文,以明志--) (一)数论 1.最大公约数,最小公倍数 2.筛法球素数 3.mod规律公式 4.排列组合数,错排 5.Catalan数 ...
- NOIP算法小结(转载)
(一)数论 1.最大公约数,最小公倍数 2.筛法求素数 3.mod规律公式 4.排列组合数,错排 5.Catalan数 6.康托展开 7.负进制 8.中位数的应用 9.位运算 (二)高精度算法 1.朴 ...
- [NOIP2017赛前复习第二期]复赛考试技巧与模版-普及组
考试技巧 1.拿到考卷首先通看题目,按自己感觉的难度排序(普及一般是1-2-3-4了~还是相信出题人不会坑我们的2333) 2.一般来说,普及组前两道题比较简单(大水题啊233~),但是通常坑很多,例 ...
- HDU 3488 Tour (最大权完美匹配)【KM算法】
<题目链接> 题目大意:给出n个点m条单向边边以及经过每条边的费用,让你求出走过一个哈密顿环(除起点外,每个点只能走一次)的最小费用.题目保证至少存在一个环满足条件. 解题分析: 因为要求 ...
- 强化学习论文(Scalable agent alignment via reward modeling: a research direction)
原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== ...
- 条件转化,2-sat BZOJ 1997
http://www.lydsy.com/JudgeOnline/problem.php?id=1997 1997: [Hnoi2010]Planar Time Limit: 10 Sec Memo ...
- hdoj 3488 Tour 【最小费用最大流】【KM算法】
Tour Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Total Submi ...
- HihoCoder1087Hamiltonian Cycle(DP状态压缩)
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Given a directed graph containing n vertice (numbered from 1 ...
随机推荐
- WebForm组合查询
封转类 using System; using System.Collections.Generic; using System.Linq; using System.Web; /// <sum ...
- javaScript动态参数
javaScript是动态语言,那么动态参数的话也是与生俱来的, 在去取javaScript得参数用的是Arguments这个属性,去取 <script type="text/java ...
- C语言的编译过程
- number_format
number_format — 以千位分隔符方式格式化一个数字 说明 string number_format ( float $number [, int $decimals = 0 ] ) str ...
- SqlSever基础 isnull 将null替换成指定字符串
镇场诗:---大梦谁觉,水月中建博客.百千磨难,才知世事无常.---今持佛语,技术无量愿学.愿尽所学,铸一良心博客.------------------------------------------ ...
- axis2通过wsdl生成客户端程序并本地调用
wsdl2java -uri http://10.0.5.12/brm/services/RuleEngine1374389539674484?wsdl -p east.mvc.webservice. ...
- dev RichText高亮
需要引用的DLL DevExpress.CodeParser DevExpress.Office DevExpress.RichEdit DevExpress.XtraRichEdit MySyn ...
- [UVa1210]Sum of Consecutive Prime Numbers(前缀和,打表)
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- mybatis的基本配置:实体类、配置文件、映射文件、工具类 、mapper接口
搭建项目 一:lib(关于框架的jar包和数据库驱动的jar包) 1,第一步:先把mybatis的核心类库放进lib里
- hdu 2196 Computer 树的直径
Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...