题目

在一个有向图上,从一点A出发,经过所有除A的顶点一次且仅经过一次,最后到达起始点A,所形成的路径为哈密顿环。两个哈密顿环不同,当且仅当路径上的任意一个顶点P的下一个顶点不同。 
    给出一个顶点数目为 <= 12, 边的数目 <= 200(有可能有重边)的有向图的所有可能的哈密顿环的总数。

分析

哈密顿环经过所有的顶点,因此可以从任何一个顶点出发(在程序中就选择起始点为节点0);如果两个顶点之间有重边,那么这些重边对于哈密顿环是等价的,因此在构建图的时候,要去重边。 
    使用深度优先搜索可以求出所有哈密顿环的总数,但是估算一个复杂度: 假设每个顶点都连接其他10个顶点,那么深度优先搜索复杂度约 10^10,不能接受。因此可以考虑使用记忆化搜索结合状态压缩: 
    1、状态用两个维度表示:(1)经过路径(从某个点开始到达节点0)上所覆盖的点;(2)经过的路径的起始点。 
    2、最多一共12个点,可以用一个整数的低12个比特表示经过的路径中这12个点是否被经过。因此使用 dp[status_to_visit][node] 表示从节点node开始,经过的节点的位图为 status_to_visit ,最终到达节点0所有不同的路径的总数。 
    利用记忆化深度优先搜索,求出最终的结果. 
    明确状态很重要,计算清楚边界状态很重要! 
    明确状态很重要,计算清楚边界状态很重要! 
    明确状态很重要,计算清楚边界状态很重要!

实现

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<unordered_map>
#include<list>
#include<string>
#include<string.h>
#include<set>
using namespace std;
int dp[8200][13];
//dp[status][node] 表示从node出发,最终到达点0,遍历的点的状态形成 status 时可以走的路径数目
bool connected[13][13];
struct Edge{
int to;
int next;
};
Edge gEdges[220];
int gEdgeIndex;
int gHead[13];
bool gVisited[13];
void InsertEdge(int u, int v){
if (connected[u][v]) //如果两个节点A和B之间有多条边直接从A连接到B,则只记录一次
return;
connected[u][v] = true;
int e = gEdgeIndex++;
gEdges[e].to = v;
gEdges[e].next = gHead[u];
gHead[u] = e;
} void Init(){
gEdgeIndex = 0;
memset(gEdges, -1, sizeof(gEdges));
memset(gHead, -1, sizeof(gHead));
memset(dp, -1, sizeof(dp));
memset(connected, false, sizeof(connected));
memset(gVisited, false, sizeof(gVisited));
} //用记忆化搜索实现 动态规划
//从node开始,经过的各个节点的位图为 status_to_visit,status_to_visit 中的各个节点经过
//且只经过一次,最终到达节点0. 所有可能的路径总数
int Dfs(int status_to_visit, int node){
if (dp[status_to_visit][node] != -1)
return dp[status_to_visit][node]; //当前节点之前被访问过一次
if ((status_to_visit & (1 << node)) == 0)
return dp[status_to_visit][node] = 0; int result = 0;
for (int e = gHead[node]; e != -1; e = gEdges[e].next){
int v = gEdges[e].to;
int new_status = status_to_visit & (~(1 << node));
result += Dfs(new_status, v);
}
return dp[status_to_visit][node] = result;
} int main(){
int n, m, u, v;
Init();
scanf("%d %d", &n, &m);
for (int i = 0; i < m; i++){
scanf("%d %d", &u, &v);
InsertEdge(u - 1, v - 1);
}
//初始状态,从0节点开始,最终到达节点0. status_to_visit = 0 是应为要从0开始到达0,
//在开始的时候,位图为 111111,递归到下一层时为 111110.到最后再到达0时候的status_to_visit 为 000000
dp[0][0] = 1;
int result = Dfs((1 << n) - 1, 0);
printf("%d\n", result);
return 0;
}

hiho_1087_哈密顿环的更多相关文章

  1. NPC

    这里的想说的NPC不是Non-Player-Controled,非玩家控制角色,而是Non-determinisitc Polynomial complete problem,它属于一类很特殊的问题, ...

  2. NOIP算法总结与复习

    NOIP算法总结与复习 (看了看李总的蓝皮书,收获颇多,记下此文,以明志--) (一)数论 1.最大公约数,最小公倍数 2.筛法球素数 3.mod规律公式 4.排列组合数,错排 5.Catalan数 ...

  3. NOIP算法小结(转载)

    (一)数论 1.最大公约数,最小公倍数 2.筛法求素数 3.mod规律公式 4.排列组合数,错排 5.Catalan数 6.康托展开 7.负进制 8.中位数的应用 9.位运算 (二)高精度算法 1.朴 ...

  4. [NOIP2017赛前复习第二期]复赛考试技巧与模版-普及组

    考试技巧 1.拿到考卷首先通看题目,按自己感觉的难度排序(普及一般是1-2-3-4了~还是相信出题人不会坑我们的2333) 2.一般来说,普及组前两道题比较简单(大水题啊233~),但是通常坑很多,例 ...

  5. HDU 3488 Tour (最大权完美匹配)【KM算法】

    <题目链接> 题目大意:给出n个点m条单向边边以及经过每条边的费用,让你求出走过一个哈密顿环(除起点外,每个点只能走一次)的最小费用.题目保证至少存在一个环满足条件. 解题分析: 因为要求 ...

  6. 强化学习论文(Scalable agent alignment via reward modeling: a research direction)

     原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== ...

  7. 条件转化,2-sat BZOJ 1997

    http://www.lydsy.com/JudgeOnline/problem.php?id=1997 1997: [Hnoi2010]Planar Time Limit: 10 Sec  Memo ...

  8. hdoj 3488 Tour 【最小费用最大流】【KM算法】

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Submi ...

  9. HihoCoder1087Hamiltonian Cycle(DP状态压缩)

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Given a directed graph containing n vertice (numbered from 1 ...

随机推荐

  1. Poj(3615),Floyd,最大值中的最小值

    题目链接:http://poj.org/problem?id=3615 题意:大致题意:有N个木桩,和M个木桩对之间的高度差(从x跳到y需要往上跳的高度).从x跳跃到y的路径消耗的体力值是路径中的一个 ...

  2. java 学习路线《转》

    *第一阶段:Java基础,包括java语法,面向对象特征,常见API,集合框架: *第二阶段:java界面编程,包括AWT,事件机制,SWING,这个部分也可以跳过,用的时候再看都能来及: *第三阶段 ...

  3. HTML 5 Web Sockets应用初探

    转载不错的http://developer.51cto.com/art/201008/217874.htm

  4. 2016年12月12日 星期一 --出埃及记 Exodus 21:7

    2016年12月12日 星期一 --出埃及记 Exodus 21:7 "If a man sells his daughter as a servant, she is not to go ...

  5. 深入javascript作用域链到闭包

    我之前用过闭包,用过this,虽然很多时候知道是这么一回事,但是确实理解上还不够深入.再一次看javascript高级程序设计这本书时,发现一起很多疑难问题竟然都懂了,所以总结一下一些理解,难免有错, ...

  6. 六、IO流——文件

    IO流1.字节流(InputStream.OutputStream)2.字符流 (Reader.Writer)3.缓冲流(BufferedInputStream.BufferedOutputStrea ...

  7. Failed to run the WC DB work queue associated with 错误的解决

    转载自 http://blog.csdn.net/alan00000/article/details/44084455 svn checkout 代码是出现如标题的错误,提示我clean up ,cl ...

  8. ZOJ 2182 Cable TV Network(无向图点割-最大流)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2182 题意:给出一个无向图,问最少删掉多少个顶点之后图变得不连通 ...

  9. getElementsByClassName

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. Oracle数据库名、实例名、数据库域名、数据库服务名、全局数据库名的辨析

    我也是看着各位大婶的博客然后一点点的来学习,不求全会,留个印象 数据库名 数据库名就是一个数据库的标识,用参数DB_NAME表示. 如果一台机器上安装了多个数据库,那么每一个数据库都有一个数据库名. ...