Destroying The Graph
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8158   Accepted: 2620   Special Judge

Description

Alice and Bob play the following game. First, Alice draws some directed graph with N vertices and M arcs. After that Bob tries to destroy it. In a move he may take any vertex of the graph and remove either all arcs incoming into this vertex, or all arcs outgoing from this vertex.
Alice assigns two costs to each vertex: Wi+ and Wi-. If Bob removes all arcs incoming into the i-th vertex he pays Wi+ dollars to Alice, and if he removes outgoing arcs he pays Wi- dollars.

Find out what minimal sum Bob needs to remove all arcs from the graph.

Input

Input
file describes the graph Alice has drawn. The first line of the input
file contains N and M (1 <= N <= 100, 1 <= M <= 5000). The
second line contains N integer numbers specifying Wi+. The third line defines Wi- in a similar way. All costs are positive and do not exceed 106
. Each of the following M lines contains two integers describing the
corresponding arc of the graph. Graph may contain loops and parallel
arcs.

Output

On
the first line of the output file print W --- the minimal sum Bob must
have to remove all arcs from the graph. On the second line print K ---
the number of moves Bob needs to do it. After that print K lines that
describe Bob's moves. Each line must first contain the number of the
vertex and then '+' or '-' character, separated by one space. Character
'+' means that Bob removes all arcs incoming into the specified vertex
and '-' that Bob removes all arcs outgoing from the specified vertex.

Sample Input

3 6
1 2 3
4 2 1
1 2
1 1
3 2
1 2
3 1
2 3

Sample Output

5
3
1 +
2 -
2 +
【分析】首先得拆点,一个点拆成in和out。很明显就是求最小点权覆盖集。最小点权覆盖集的求解可以借鉴二分图匹配的最大流解法。
再加上额外的源点S和汇点T后,将匹配以一条s-u-v-t形式的流路径串联起来。匹配的限制在顶点上,恰当的利用了流的容量限制。
而点覆盖集的限制在边上,最小割是最大流的对偶问题,对偶往往是将问题的性质从顶点转边,从边转顶点。可以尝试转最小割模型。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <queue>
#include <vector>
#define inf 0x7fffffff
#define met(a,b) memset(a,b,sizeof a)
typedef long long ll;
using namespace std;
const int N = ;
const int M = ;
int read() {int x=,f=;char c=getchar();while(c<''||c>'') {if(c=='-')f=-;c=getchar();}while(c>=''&&c<='') {x=x*+c-'';c=getchar();}return x*f;}
int n,m,cnt;
int win[N],wout[N];
bool flag;
int toto=;
struct Dinic {
int s,t;
struct Edge {
int nxt,to,cap,flow;
} edg[M];
bool vv[N];
bool vis[N];
int d[N];
int h[N];
int cur[N];
void init() {
met(h,-);
}
void AddEdge(int x,int y,int z) {
edg[toto].to=y;
edg[toto].nxt=h[x];
edg[toto].cap=z;
h[x]=toto++;
edg[toto].to=x;
edg[toto].nxt=h[y];
h[y]=toto++;
}
bool BFS() {
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = h[x]; i!=-; i=edg[i].nxt) {
int v=edg[i].to;
if (!vis[v] && edg[i].cap > edg[i].flow) {
vis[v]=;
d[v] = d[x]+;
q.push(v);
if(flag)vv[v]=true;
}
}
}
return vis[t];
} int DFS(int x,int a) {
if (x==t || a==)
return a;
int flow = ,f;
for(int &i=cur[x]; i!=-; i=edg[i].nxt) {
int v=edg[i].to;
if (d[x]+ == d[v] && (f=DFS(v,min(a,edg[i].cap-edg[i].flow)))>) {
edg[i].flow+=f;
edg[i^].flow-=f;
flow+=f;
a-=f;
if (a==)
break;
}
}
return flow;
} int Maxflow(int s,int t) {
this->s=s;
this->t=t;
int flow = ;
while (BFS()) {
for(int i=; i<=t; i++)cur[i]=h[i];
flow+=DFS(s,inf);
}
return flow;
} } dc; int main() {
while (~scanf("%d%d",&n,&m)) {
dc.init();
met(wout,);
met(win,);
flag=false;
for(int i=; i<=n; i++)win[i]=read();
for(int i=; i<=n; i++)wout[i]=read();
while(m--) {
int u=read();
int v=read();
dc.AddEdge(u,v+n,inf);
}
for(int i=; i<=n; i++) {
dc.AddEdge(,i,wout[i]);
dc.AddEdge(i+n,*n+,win[i]);
}
printf("%d\n",dc.Maxflow(,*n+));
int sum=;
flag=true;
dc.BFS();
for(int i=; i<=n; i++) {
if(!dc.vv[i])sum++;
if(dc.vv[n+i])sum++;
}
printf("%d\n",sum);
for(int i=; i<=n; i++) {
if(!dc.vv[i])printf("%d -\n",i);
if(dc.vv[n+i])printf("%d +\n",i);
}
}
return ;
}

POJ2125 Destroying The Graph (最小点权覆盖集)(网络流最小割)的更多相关文章

  1. POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)

    题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...

  2. 最小点权覆盖集&最大点权独立集

    最小点权覆盖集 二分图最小点权覆盖集解决的是这样一个问题: 在二分图中,对于每条边,两个端点至少选一个,求所选取的点最小权值和. 方法: 1.先对图二分染色,对于每条边两端点的颜色不同 2.然后建立源 ...

  3. POJ2125 Destroying The Graph(二分图最小点权覆盖集)

    最小点权覆盖就是,对于有点权的有向图,选出权值和最少的点的集合覆盖所有的边. 解二分图最小点权覆盖集可以用最小割: vs-X-Y-vt这样连边,vs和X部点的连边容量为X部点的权值,Y部和vt连边容量 ...

  4. HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]

    嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...

  5. hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)

    /** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...

  6. POJ 2125 最小点权覆盖集(输出方案)

    题意:给一个图(有自回路,重边),要去掉所有边,规则:对某个点,可以有2种操作:去掉进入该点 的所有边,也可以去掉出该点所有边,(第一种代价为w+,第二种代价为w-).求最小代价去除所有边. 己思:点 ...

  7. poj2125 最小点权覆盖集

    题意:有一张图,对于每个点,有出边和入边,现在目的是删除改图的所有边,对于每个点,删除出边的花费Wi-,删除入边的花费Wi+,现在的目的求删去所有边后的花费最小. 建图方法:对于每个点i,拆点为i,i ...

  8. HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]

    题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...

  9. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

随机推荐

  1. HighAvailability和LoadBalancer

    HighAvailability                         LoadBalancer 红帽RHCS                                lvs(三种工作 ...

  2. SharePoint 2013 开发——开发并部署第一个APP

    博客地址:http://blog.csdn.net/FoxDave 本篇我们开始对开发APP应用程序进行了解. 本篇基于本地SharePoint环境(如果是Office 365的话会方便许多),需 ...

  3. YAML 语言语法

    发现很多开源的软件的配置文件都使用了这种语言来描述,据说是简单强大,很不巧,ansible也使用了这种语言来描述配置,学习ansible之前,先学习一下YAML语言. YAML基本语法规则如下: 大小 ...

  4. Oracle GoldenGate 12c (12.1.2.0.1) for IBM DB2 iSeries

    OGG 12.1.2.0.1 for iSeries 在2014.2.15发布,主要新增如下功能: 本地交付(Native Delivery Replicat):新功能允许用户在IBM i服务器上安装 ...

  5. string(Integer)类的equals和==区别和联系(验证密码的时候用得到)

    “==”在八种原始数据类型中,判断的是两边的值是否相等.对于对象类型来说,判断的是内存地址,所以为true所满足的条件就是两边的引用指向同一个对象. 比如String s1 = "abcde ...

  6. Listview之优化BaseAdapter中的getView中的contentView

    BaseAdapter中getView中改动的地方: @Override public View getView(int position, View contentView, ViewGroup a ...

  7. HDU 4417 - Super Mario ( 划分树+二分 / 树状数组+离线处理+离散化)

    题意:给一个数组,每次询问输出在区间[L,R]之间小于H的数字的个数. 此题可以使用划分树在线解决. 划分树可以快速查询区间第K小个数字.逆向思考,判断小于H的最大的一个数字是区间第几小数,即是答案. ...

  8. node 学习笔记

    以下笔记默认安装完成node 及npm 1.安装express 新版本的express-generator已经独立出来,全局安装这个包就ok. npm install express-generato ...

  9. html释疑

    解析<button>和<input type="button"> 的区别(转) 一.定义和用法 <button> 标签定义的是一个按钮. 在 b ...

  10. Nullsoft教程 NSIS初学者图文教程一

    Nullsoft教程 NSIS初学者图文教程一 来源:互联网 作者:佚名 时间:03-29 00:34:33 [大 中 小] Nullsoft Installation System(nsis) 是一 ...