很好的总结,转自:

http://blog.csdn.net/dyx404514/article/details/42061017

总结为:两大情况,三小情况。

两大情况:I. i <= p

1.要处理的位置i及i为中心的回文半径Len[i] < p-i已经完全包含在某个回文中了,这种情况不用计算,len[i] = len[j]。

2.要处理的位置i在某个回文中,但是以i为中心的回文半径len[i] >= p-i,需要往后匹配,重新更新p,及对应的po和Len[i];

II. i > p

要计算的位置已经超出某个回文了,之前的回文已经没用,要重新计算新的位置了。只能挨个匹配了。

 // manacher.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream>
#include <string>
#include <vector>
#include <iterator>
using namespace std; string ManaStr(string &orgStr,int length)
{//构造“马拉车”串
if(length == )
return NULL; string manacherString(*length+,'#');
for(int i = ;i < length;i++)
manacherString[*i+] = orgStr[i]; cout<<manacherString<<endl;
return manacherString;
} int manacher(string &manStr,int manacherLen)
{//“马拉车”计算过程,主要是每个位置对应的回文半径数组的生成,pArr[i]
if(manacherLen == )
return ; int Len[];//回文半径数组
for(int i = ; i <;i++)
Len[i] = ;
for(int i = ; i <;i++)
cout<<Len[i];
int po = ;//某个回文中心
int mostRight = -;//某个回文串最右的位置,并不包含这个位置
int result = ; //for(int i = 0;i != manacherLen;i++)
for(int i = ;i != ;i++)
{
Len[i] = mostRight > i ? min(mostRight-i,Len[*po-i]):;
/*
当前位置i包含在某个回文串中,那么Len[i]的值就是i到mostRight或者
关于po对称的j位置的Len值(j = 2*po-i)
*/
while(i+Len[i] < manacherLen && i-Len[i] >=)
{
if(manStr[i - Len[i]] == manStr[i + Len[i]])
Len[i]++;//检查是否可扩
else
break;
}
if(i+Len[i] > mostRight)
{//扩到mostRight之外了,旧的回文串就不起作用了,更新成新的回文串
//mostRight = Len[i] + 1;!!!!!!艹!!!会死人啊
mostRight = Len[i] + i;
po = i;
}
result = max(result,Len[i]);
}
return result - ;
} int _tmain(int argc, _TCHAR* argv[])
{
string originalString = "abc1234321ab";//结果应该为7
int originalLen = originalString.length();
//int originalLen = 12;
cout<<originalString<<endl;
string manacherString = ManaStr(originalString,originalLen);
int manStrLen = *originalLen + ;
cout<<"原串中包含的最长回文长度为:"<<manacher(manacherString,manStrLen)<<endl;
system("pause");
return ;
}

manacher

一个变形题

 // manacher_.cpp : 定义控制台应用程序的入口点。
//题目:给定一个串,求 在串的后边添加最小字符使得整体都是回文
//解法:利用manacher算法,当mostRight == length的时候停止,并记录下Len[i]
// 找到包含最后一个字符的回文串,之前的逆序就是要求的结果
//例子:abcd123321,在后边加dcba就是回文,返回dcba。 #include "stdafx.h"
#include <iostream>
#include <string>
using namespace std; string manStr(string &orgStr,int orgLen)
{
if(orgLen == )
return NULL; string manaString(*orgLen+,'#');
//string的一种构造方法string(num,ele)
for(int i = ; i < orgLen; i++)
manaString[*i+] = orgStr[i]; cout<<manaString<<endl;
return manaString;
} void manacherCore(string& mancherStr,int manaLen)
{
if(manaLen == )
return; int mostEnd = ;
int mostRight = -;
int po = ;
int Len[];
for(int i = ; i< ; i++)
Len[i] = ;//初始化Len for(int i = ;i != manaLen; i++)
{
Len[i] = mostRight > i? min(mostRight - i,Len[*po-i]):;
//while(i+Len[i] < manaLen && i- manaLen > -1)麻痹又写错
while(i+Len[i] < manaLen && i- Len[i] > -)
{
if(mancherStr[i + Len[i]] == mancherStr[i - Len[i]])
Len[i]++;
else
break;
}
if(i + Len[i] > mostRight)
{
mostRight =i + Len[i];
po = i;
}
if(mostRight == manaLen)
{
mostEnd = Len[i];
break;
}
}
//string result(10-(mostEnd-1),'0');//保存结果的string
string result(-mostEnd+,'');//这里应该是原串长度10
int resLen = result.length(); for (int i = ; i < resLen; i++)
result[resLen-i-] = mancherStr[*i+];
cout<<result<<endl; } int _tmain(int argc, _TCHAR* argv[])
{
string orginalStr = "abcd123321";
cout<<orginalStr<<endl;
int orgLen = orginalStr.length();
string mancherStr = manStr(orginalStr,orgLen);
int manaLen = mancherStr.length();
manacherCore(mancherStr,manaLen);
system("pause");
return ;
}

manacher变形

manacher算法_求最长回文子串长度的更多相关文章

  1. manacher算法学习(求最长回文子串长度)

    Manacher总结 我的代码 学习:yyb luogu题目模板 xzy的模板 #include<iostream> #include<cstdlib> #include< ...

  2. Manacher模板( 线性求最长回文子串 )

    模板 #include<stdio.h> #include<string.h> #include<algorithm> #include<map> us ...

  3. Manacher算法讲解——字符串最长回文子串

    引 入 引入 引入 Manachar算法主要是处理字符串中关于回文串的问题的,这没什么好说的. M a n a c h e r 算 法 Manacher算法 Manacher算法 朴素 求一个字符串中 ...

  4. 【Manacher算法】求最长回文串的优秀算法

    先贴一下代码~ //by 减维 #include<cstdio> #include<iostream> #include<cstring> #include< ...

  5. [hdu 3068] Manacher算法O(n)最长回文子串

    一个不错的讲解:https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/01.05.md # ...

  6. Manacher 求最长回文子串算法

    Manacher算法,是由一个叫Manacher的人在1975年发明的,可以在$O(n)$的时间复杂度里求出一个字符串中的最长回文子串. 例如这两个回文串“level”.“noon”,Manacher ...

  7. Manacher算法(马拉车)求最长回文子串

    Manacher算法求最长回文字串 算法思路 按照惯例((・◇・)?),这里只是对算法的一些大体思路做一个描述,因为找到了相当好理解的博客可以参考(算法细节见参考文章). 一般而言,我们的判断回文算法 ...

  8. Manacher算法:求解最长回文字符串,时间复杂度为O(N)

    原文转载自:http://blog.csdn.net/yzl_rex/article/details/7908259 回文串定义:"回文串"是一个正读和反读都一样的字符串,比如&q ...

  9. Manacher (马拉车) 算法:解决最长回文子串的利器

    最长回文子串 回文串就是原串和反转字符串相同的字符串.比如 aba,acca.前一个是奇数长度的回文串,后一个是偶数长度的回文串. 最长回文子串就是一个字符串的所有子串中,是回文串且长度最长的子串. ...

随机推荐

  1. java读写中文文件

    在用Java程序进行读写含中文的txt文件时,经常会出现读出或写入的内容会出现乱码.原因其实很简单,就是系统的编码和程序的编码采用了不同的编码格式.通常,假如自己不修改的话,windows自身采用的编 ...

  2. queue-fun —— nodejs下基于Promise的队列控制模块。

    工作告一段落,闲来无事,写了一个在nodejs实现“半阻塞”的控制程序. 一直以来,nodejs以单线程非阻塞,高并发的特性而闻名.搞这个“半阻塞”是东西,有什么用呢? 场景一: 现在的web应用可有 ...

  3. Entity Framework学习 - 3.关联查询

    1.Inner Join(默认) var Goods = from goods in db.T_Goods                    join types in db.T_GoodsTyp ...

  4. Maven+Spring+Hibernate+Shiro+Mysql简单的demo框架(二)

    然后是项目下的文件:完整的项目请看  上一篇 Maven+Spring+Hibernate+Shiro+Mysql简单的demo框架(一) 项目下的springmvc-servlet.xml配置文件: ...

  5. U3D NGUI改变GameObject Activity闪烁的问题

    不是关闭再激活GameObject会闪烁,而是再激活时,NGUI渲染步骤不一致导致的闪烁. 并且文字激活后渲染要慢一帧,如果延迟一帧处理,又会导致精灵图片快一帧,图片重叠.这个测试结果不一定准确,先记 ...

  6. [HZNUOJ1524]排队买票(DP)

    题目链接:http://acm.hznu.edu.cn/JudgeOnline/problem.php?id=1524 简单分析后可以知道每一个手持两元的小朋友前面,售票员手里至少有一个一元. 假设d ...

  7. leetcode:Lowest Common Ancestor of a Binary Search Tree

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  8. 转:最值得学习阅读的10个C语言开源项目代码

    阅读优秀代码是提高开发人员修为的一种捷径……  1. Webbench Webbench是一个在linux下使用的非常简单的网站压测工具.它使用fork()模拟多个客户端同时访问我们设定的URL,测试 ...

  9. 【温故知新】C#委托delegate

    在c#的学习过程中,学到委托与事件总会迷糊一段时间,迷糊过后自然而就似懂非懂了~,所以最近我打算把以前所学的迷糊过的知识总结,温故知新,总结记录下来. 首先,我们来看一下msdn对委托的定义: del ...

  10. POI刷新数据后的函数(公式)更新问题

    使用POI将Excel模板中的数据进行更新,这应该是很常见的操作 下面就贴上我的一小段代码 public class ModifyExcel { /** * @param fileName Excel ...