在上一篇文章中我们讲解了一个基本的MapReduce作业由那些基本组件组成,从高层来看,所有的组件在一起工作时如下图所示:

图4.4高层MapReduce工作流水线

  MapReduce的输入一般来自HDFS中的文件,这些文件分布存储在集群内的节点上。运行一个MapReduce程序会在集群的许多节点甚至所有节点上运行mapping任务,每一个mapping任务都是平等的:mappers没有特定“标识物”与其关联。因此,任意的mapper都可以处理任意的输入文件。每一个mapper会加载一些存储在运行节点本地的文件集来进行处理(译注:这是移动计算,把计算移动到数据所在节点,可以避免额外的数据传输开销)。

  当mapping阶段完成后,这阶段所生成的中间键值对数据必须在节点间进行交换,把具有相同键的数值发送到同一个reducer那里。Reduce任务在集群内的分布节点同mappers的一样。这是MapReduce中唯一的任务节点间的通信过程。map任务间不会进行任何的信息交换,也不会去关心别的map任务的存在。相似的,不同的reduce任务之间也不会有通信。用户不能显式的从一台机器封送信息到另外一台机器;所有数据传送都是由Hadoop MapReduce平台自身去做的,这些是通过关联到数值上的不同键来隐式引导的。这是Hadoop MapReduce的可靠性的基础元素。如果集群中的节点失效了,任务必须可以被重新启动。如果任务已经执行了有副作用(side-effect)的操作,比如说,跟外面进行通信,那共享状态必须存在可以重启的任务上。消除了通信和副作用问题,那重启就可以做得更优雅些。

近距离观察

  在上一图中,描述了Hadoop MapReduce的高层视图。从那个图你可以看到mapper和reducer组件是如何用到词频统计程序中的,它们是如何完成它们的目标的。接下来,我们要近距离的来来看看这个系统以获取更多的细节。

图4.5细节化的Hadoop MapReduce数据流

  图4.5展示了流线水中的更多机制。虽然只有2个节点,但相同的流水线可以复制到跨越大量节点的系统上。下去的几个段落会详细讲述MapReduce程序的各个阶段。

  输入文件:文件是MapReduce任务的数据的初始存储地。正常情况下,输入文件一般是存在HDFS里。这些文件的格式可以是任意的;我们可以使用基于行的日志文件,也可以使用二进制格式,多行输入记录或其它一些格式。这些文件会很大—数十G或更大。

  输入格式:InputFormat类定义了如何分割和读取输入文件,它提供有下面的几个功能:

  • 选择作为输入的文件或对象;
  • 定义把文件划分到任务的InputSplits;
  • 为RecordReader读取文件提供了一个工厂方法;

  Hadoop自带了好几个输入格式。其中有一个抽象类叫FileInputFormat,所有操作文件的InputFormat类都是从它那里继承功能和属性。当开启Hadoop作业时,FileInputFormat会得到一个路径参数,这个路径内包含了所需要处理的文件,FileInputFormat会读取这个文件夹内的所有文件(译注:默认不包括子文件夹内的),然后它会把这些文件拆分成一个或多个的InputSplit。你可以通过JobConf对象的setInputFormat()方法来设定应用到你的作业输入文件上的输入格式。下表给出了一些标准的输入格式:

输入格式

描述

TextInputFormat

默认格式,读取文件的行

行的字节偏移量

行的内容

KeyValueInputFormat

把行解析为键值对

第一个tab字符前的所有字符

行剩下的内容

SequenceFileInputFormat

Hadoop定义的高性能二进制格式

用户自定义

用户自定义

表4.1MapReduce提供的输入格式

  默认的输入格式是TextInputFormat,它把输入文件每一行作为单独的一个记录,但不做解析处理。这对那些没有被格式化的数据或是基于行的记录来说是很有用的,比如日志文件。更有趣的一个输入格式是KeyValueInputFormat,这个格式也是把输入文件每一行作为单独的一个记录。然而不同的是TextInputFormat把整个文件行当做值数据,KeyValueInputFormat则是通过搜寻tab字符来把行拆分为键值对。这在把一个MapReduce的作业输出作为下一个作业的输入时显得特别有用,因为默认输出格式(下面有更详细的描述)正是按KeyValueInputFormat格式输出数据。最后来讲讲SequenceFileInputFormat,它会读取特殊的特定于Hadoop的二进制文件,这些文件包含了很多能让Hadoop的mapper快速读取数据的特性。Sequence文件是块压缩的并提供了对几种数据类型(不仅仅是文本类型)直接的序列化与反序列化操作。Squence文件可以作为MapReduce任务的输出数据,并且用它做一个MapReduce作业到另一个作业的中间数据是很高效的。

MapReduce数据流(一)的更多相关文章

  1. MapReduce数据流

    图4.5细节化的Hadoop MapReduce数据流 图4.5展示了流线水中的更多机制.虽然只有2个节点,但相同的流水线可以复制到跨越大量节点的系统上.下去的几个段落会详细讲述MapReduce程序 ...

  2. 简述MapReduce数据流

    目前it基本都是一个套路,获得数据然后进行逻辑处理,存储数据. 基本上弄清楚整个的数据流向就等于把握了命脉. 现在说说mapreduce的数据流 1.首先数据会按照TextInputFormat按照特 ...

  3. MapReduce数据流(二)

    输入块(InputSplit):一个输入块描述了构成MapReduce程序中单个map任务的一个单元.把一个MapReduce程序应用到一个数据集上,即是指一个作业,会由几个(也可能几百个)任务组成. ...

  4. 理解hadoop的Map-Reduce数据流(data flow)

    http://blog.csdn.net/yclzh0522/article/details/6859778 Map-Reduce的处理过程主要涉及以下四个部分: 客户端Client:用于提交Map- ...

  5. MapReduce数据流-输出

  6. MapReduce数据流-Reduce

  7. MapReduce数据流-Partiton&Shuffle

  8. MapReduce数据流-Mapper

  9. MapReduce数据流-输入

随机推荐

  1. C#_抓包HttpWebRequest跟HttpWebResponse

    1.第一招,根据URL地址获取网页信息  这招是入门第一式, 特点: 1.最简单最直观的一种,入门课程. 2.适应于明文,无需登录,无需任何验证就可以进入的页面. 3.获取的数据类型为HTML文档. ...

  2. python剑指网络篇一

    #coding:utf-8 __author__ = 'similarface' #!/usr/bin/env python import socket #二进制和ASCII互转及其它进制转换 fro ...

  3. Hacker Technology

    扒一扒「黑客军团」中用到的黑客工具 黑客 (Hacker) - 知乎 nmap - 百科 NMAP - 官网  中文翻译 Havij sqlmap 熊猫烧香 懒人在思考 零基础如何学习 Web 安全? ...

  4. 如何进行shell脚本正确性测试

    在实际工作中,需要对shell脚本进行正确性测试. 如何用最快最有效的方式进行测试? 很多开发的习惯是,二话不说,写完/拿到,就跑一把,看看输入,输出,想要的操作是否完成,也就过了. 其实这是十分不严 ...

  5. linux笔记:网络命令ping,traceroute,ifconfig,netstat;挂载和卸载命令mount,umount

    命令名称:ping功能:测试网络连通性命令所在路径:/bin/ping用法:ping [-c] IP地址参数:-c 指定发送次数 命令名称:ifconfig功能:查看和设置网卡信息(临时设置)命令所在 ...

  6. Jquery如何获得<iframe>嵌套页面中的元素

    DOM方法:父窗口操作IFRAME:window.frames["iframeSon"].documentIFRAME操作父窗口: window.parent.documentjq ...

  7. C# Form内存回收

    namespace WebBrowserMemoryTest { public partial class Form1 : Form { private int _Pages; public Form ...

  8. struts 标签库注解

    在struts2中有着一套像html一样的标签,俗称struts2标签,大多数公司使用ssh都是使用html标签,但为了保持项目的统一性,有的公司还是使用的struts2的标签,下面是一些常用的str ...

  9. 51nod 1021 石子归并(dp)

    51nod 1021 石子归并 题解:从i到j合并的最小值:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]); 最 ...

  10. (转载整理)SAP ERP常用T-CODE

    其实最讨厌做ERP的项目了.不过,身不由己的嘛! 网上资料加一些整理. 与客户相关  VD01 建立客户 Create customerVD02 更改客户 Change customerVD03 显示 ...