Time Limit:15000MS     Memory Limit:228000KB     64bit IO Format:%I64d & %I64u

Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
 #include<cstdio>
#include<string.h>
#include<algorithm>
#define MAXN 4400
using namespace std;
int A[MAXN],B[MAXN],C[MAXN],D[MAXN];
int S[MAXN*MAXN];
int lower_bound1(int low,int high,int num,int a[])
{
int mid;
while(low<high)
{
mid=low+(high-low)/;
if(a[mid]>=num) high=mid;
else low=mid+;
}
return low;
}
int upper_bound1(int low,int high,int num,int a[])
{
int mid;
while(low<high)
{
mid=low+(high-low)/;
if(a[mid]<=num) low=mid+;
else
high=mid;
}
return low;
}
int main()
{
int n,i;
int p;
int cout=;
int l,r,j;
while(scanf("%d",&n)!=EOF)
{
cout=;
for(i=;i<n;i++)
scanf("%d%d%d%d",&A[i],&B[i],&C[i],&D[i]);
p=;
for(i=;i<n;i++)
for(j=;j<n;j++)
S[p++]=A[i]+B[j];
sort(S,S+p);
for(i=;i<n;i++)
for(j=;j<n;j++)
{
int t=C[i]+D[j];
l=lower_bound1(,p,-t,S);
r=upper_bound1(,p,-t,S);
cout+=(r-l);
}
printf("%d\n",cout);
}
return ;
}

4 Values whose Sum is 0的更多相关文章

  1. POJ 2785 4 Values whose Sum is 0(想法题)

    传送门 4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 20334   A ...

  2. POJ 2785 4 Values whose Sum is 0

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 13069   Accep ...

  3. 哈希-4 Values whose Sum is 0 分类: POJ 哈希 2015-08-07 09:51 3人阅读 评论(0) 收藏

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 17875 Accepted: ...

  4. [poj2785]4 Values whose Sum is 0(hash或二分)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 19322 Accepted: ...

  5. K - 4 Values whose Sum is 0(中途相遇法)

    K - 4 Values whose Sum is 0 Crawling in process... Crawling failed Time Limit:9000MS     Memory Limi ...

  6. UVA 1152 4 Values whose Sum is 0 (枚举+中途相遇法)(+Java版)(Java手撕快排+二分)

    4 Values whose Sum is 0 题目链接:https://cn.vjudge.net/problem/UVA-1152 ——每天在线,欢迎留言谈论. 题目大意: 给定4个n(1< ...

  7. UVA1152-4 Values whose Sum is 0(分块)

    Problem UVA1152-4 Values whose Sum is 0 Accept: 794  Submit: 10087Time Limit: 9000 mSec Problem Desc ...

  8. POJ - 2785 4 Values whose Sum is 0 二分

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25615   Accep ...

  9. POJ 2785 4 Values whose Sum is 0(折半枚举+二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25675   Accep ...

  10. POJ:2785-4 Values whose Sum is 0(双向搜索)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 26974 Accepted: ...

随机推荐

  1. uva 1220

    1220 - Party at Hali-Bula Time limit: 3.000 seconds Dear Contestant, I'm going to have a party at my ...

  2. POJ 2482 扫描线(面积覆盖最大次数)

    Stars in Your Window Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10806   Accepted:  ...

  3. PowerMock遇到的问题——4

    当我们在测试一个方法的构造方法的时候,有的时候内部需要new一些对象,这是就需要用到PowerMock.exceptNew(),这个方法,但有时候传的参数有关键字this,比如SAPPublisher ...

  4. 理解ROS rqt_console和 roslaunch

    1.使用rqt_console和roslaunch 这篇教程将介绍使用rqt_console和rqt_logger_level来调试以及使用roslaunch一次启动许多nodes.如果你使用ROS  ...

  5. (BFS)hdoj1242-Rescue

    题目地址 初学BFS,第一次用BFS做题.题目就是一个基本的BFS模型,需要稍加注意的是遇到警卫时间要+1,以及最后比的是最短的时间而不是步数. #include<cstdio> #inc ...

  6. 【个人使用.Net类库】(1)INI配置文件操作类

    开发接口程序时,对于接口程序配置的IP地址.端口等都需要是可配置的,而在Win Api原生实现了INI文件的读写操作,因此只需要调用Win Api中的方法即可操作INI配置文件,关键代码就是如何调用W ...

  7. 详解C++中指针(*)、取地址(&)、解引用(*)与引用(&)的区别 (完整代码)

    一.初步了解--指针与取地址 先看程序: #include<cstdio> int main(void) { int num = 7; int *p = &num; printf( ...

  8. 傅里叶变换:MP3、JPEG和Siri背后的数学

    九年前,当我还坐在学校的物理数学课的课堂里时,我的老师为我们讲授了一种新方法,给我留下了深刻映像.我认为,毫不夸张地说,这是对数学理论发现最广泛的应用.应用的领域包括:量子物理.射电天文学.MP3和J ...

  9. Android 之 数据存储

    在Android操作系统中,提供了5种数据存储方式:SharedPreferences存储,文件存储,SQLite数据库存储,ContentProvider存储和网络存储. 一.SharedPrefe ...

  10. SharePoint 2013 Nintex Workflow 工作流帮助(十三)

    博客地址 http://blog.csdn.net/foxdave 工作流动作 35. Delegate Workflow Task(User interaction分组) 该操作将委托未处理的工作流 ...