昂贵的聘礼 Dijkstra法
poj 1062
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 39437 | Accepted: 11432 |
Description
为了方便起见,我们把所有的物品从1开始进行编号,酋长的允诺也看作一个物品,并且编号总是1。每个物品都有对应的价格P,主人的地位等级L,以及一系列的替代品Ti和该替代品所对应的"优惠"Vi。如果两人地位等级差距超过了M,就不能"间接交易"。你必须根据这些数据来计算出探险家最少需要多少金币才能娶到酋长的女儿。
Input
Output
Sample Input
1 4
10000 3 2
2 8000
3 5000
1000 2 1
4 200
3000 2 1
4 200
50 2 0
Sample Output
5250
对于从u点出发到w点的路径中,他会跟很多等级的人交易,然而必须满足在路径中的点等级差不很超过一个M值,那么怎么对这样的问题求解呢?我没看报告前是很疑惑的!
假设如果给这条路径加上一个附加条件的话,情况可能就有所变化了,要求最短路中的所有点的等级在一个区间内[a,b],如果能够很好的给出这个区间的话,只要对图中的点进行上筛选即可了。
这个区间的确定显然不是随便的,那么就要根据一定的条件了,从题意中我们知道,最后所有的最短路都会汇集在1号点,也就是说1号点是所有最短路都存在的点,好了,这个条件很重要,这样我们就可以依照1号点来给定区间了,比如1号点等级为lev,那么也就是说在所有最短路的这些点都必须满足在[lev-M,lev+M]这个区间里面。好了,可能你会迫不及待将这个区间作为最后的区间,在想想,如果在这个区间内出现的两个点的他们之间的等级差超过了M值(这是存在的),显然,不符合题意了,所以这个区间还有继续缩小。其实只要稍微动动脑子,就可以找出这样的区间[lev-M,lev],[lev-M+1,lev+1],... ...,[lev,lev+M],首先这些区间都满足大区间的条件,而且如果将这些区间的某个作为筛选条件的话,在这个区间内的任意两个点的等级都不会超过M值,这就是很特别的地方了(转)
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
const int INF=;
int maps[][],v[],d[],N;
int l[],p[],in[]; int Dijkstra()
{
memset(v,,sizeof(v));
int i,j,k,mini; for(i=;i<=N;i++)
d[i]=INF;
d[]=;
for(i=;i<=N;i++)
{
mini=INF;k=-;
for(j=;j<=N;j++)
{
if(!v[j] && in[j] && d[j]<mini)
mini=d[k=j];
}
if(mini==INF)
break; v[k]=;
for(j=;j<=N;j++)
{
if(!v[j] && in[j] && d[k]+maps[k][j]<d[j])
{
d[j]=d[k]+maps[k][j];
}
}
}
mini=INF;
for(i=;i<=N;i++)
{
if(d[i]+p[i]<mini && v[i])
mini=d[i]+p[i];
}
return mini;
} int main()
{
int m,x,T,V;
int i,j,minicost;
while(scanf("%d %d",&m,&N)!=EOF)
{ for(i=;i<=N;i++)
{
for(j=;j<=N;j++)
{
maps[i][j]=( i==j ? :INF);
}
}
for(i=;i<=N;i++)
{
scanf("%d %d %d",&p[i],&l[i],&x);
for(j=;j<=x;j++)
{
scanf("%d %d",&T,&V);
if(maps[i][T]>V)
{
maps[i][T]=V;
}
}
}
int lev=l[],coc;
minicost=INF;
for(i=;i<=m;i++)
{
memset(in,,sizeof(in));
for(j=;j<=N;j++)
{
if(l[]-m+i<=l[j] && l[j]<=l[]+i)
in[j]=;
}
coc=Dijkstra();
if(coc<minicost)
minicost=coc;
}
printf("%d\n",minicost);
}
return ;
}
昂贵的聘礼 Dijkstra法的更多相关文章
- 昂贵的聘礼(dijkstra)
昂贵的聘礼 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 38549 Accepted: 11158 Descripti ...
- POJ - 1062 昂贵的聘礼 Dijkstra
思路:构造最短路模型,抽象出来一个源点,这个源点到第i个点的费用就是price[i],然后就能抽象出图来,终点是1. 任意两个人之间都有等级限制,就枚举所有最低等级限制,然后将不再区间[min_lev ...
- POJ-1062 昂贵的聘礼---Dijkstra+枚举上界
题目链接: https://vjudge.net/problem/POJ-1062 题目大意: 中文题 思路: 1是终点,可以额外添加一个源点0,0到任意一节点的距离就是这个点的money,最终求的是 ...
- 最短路(Dijkstra) POJ 1062 昂贵的聘礼
题目传送门 /* 最短路:Dijkstra算法,首先依照等级差距枚举“删除”某些点,即used,然后分别从该点出发生成最短路 更新每个点的最短路的最小值 注意:国王的等级不一定是最高的:) */ #i ...
- POJ1062昂贵的聘礼(dijkstra)
昂贵的聘礼 题目大意是说有N个物品,每个物品都有自己的价格,但同时某些物品也可以由其他的(可能不止一个)替代品,这些替代品的价格比较“优惠”,问怎么样选取可以让你的花费最少来购买到物品1 由于有N个物 ...
- POJ1062昂贵的聘礼(经典) 枚举区间 +【Dijkstra】
<题目链接> 昂贵的聘礼 Description 年轻的探险家来到了一个印第安部落里.在那里他和酋长的女儿相爱了,于是便向酋长去求亲.酋长要他用1000 ...
- (最短路 dijkstra)昂贵的聘礼 -- poj -- 1062
链接: http://poj.org/problem?id=1062 昂贵的聘礼 Time Limit: 1000MS Memory Limit: 10000K Total Submissions ...
- poj 1062 昂贵的聘礼 (dijkstra最短路)
题目链接:http://poj.org/problem?id=1062 昂贵的聘礼 Time Limit: 1000MS Memory Limit: 10000K Total Submission ...
- POJ - 1062 昂贵的聘礼(最短路Dijkstra)
昂贵的聘礼 Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %I64d & %I64u SubmitStatus Descr ...
随机推荐
- OpenStack 计算节点关机,虚拟机状态解决办法
检查服务正常化 1 nova-manage service list 发现很多nova服务没有启动. 全部启动,直到nova-manage service list所有服务都是:)而不是XXX. 虚拟 ...
- SQL server 创建 修改表格 及表格基本增删改查 及 高级查询 及 (数学、字符串、日期时间)函数[转]
SQL server 创建 修改表格 及表格基本增删改查 及 高级查询 及 (数学.字符串.日期时间)函数 --创建表格 create table aa ( UserName varchar(50 ...
- Android侧滑
人人客户端有一个特效还是挺吸引人的,在主界面手指向右滑动,就可以将菜单展示出来,而主界面会被隐藏大部分,但是仍有左侧的一小部分同菜单一起展示. 据说人人客户端的这个特效是从facebook客户端模仿来 ...
- startActivityForResult 页面跳转回调
import java.io.Serializable; import java.util.ArrayList; import java.util.HashMap; import java.util. ...
- virtualbox -centos ping不通外网
centos上配置网卡自动获取ip 在路由器上配置了ip和mac绑定.ping不通外网.删除路由器上的静态mac绑定后OK,不明
- innodb内部的并发线程
1. innodb_thread_concurrency innodb有一系列的计数器来统计和控制内部的工作线程.其中最重要的一个是innodb_thread_concurrency,和它相关的inn ...
- 160913、ionic + 高德地图定位
实例一: var AMapArea=document.getElementById('amap'); AMapArea.parentNode.style.height="100%" ...
- 如何清除DNS缓存,使用cmd命令清理DNS缓存方法
如何清除DNS缓存,使用cmd命令清理DNS缓存方法 有时候电脑突然上不了网,或者存在某些网站打不开的情况,但别的网站又可以打开,解决办法需要清除DNS缓存,那么如何清除DNS缓存呢,最常用的方法就是 ...
- tomcat启动startup.bat一闪而过 转
遇到很多次运行startup.bat后,一个窗口一闪而过的问题,但是从来没去纠正怎样修改配置才是正确的,现在从网上查阅的资料整理如下:tomcat在启动时,会读取环境变量的信息,需要一个CATALIN ...
- Delphi中CoInitialize之探究
CoInitialize(LPVOID),它将以特定参数调用CoInitializeEx,为当前单元初始化COM库,并标记协同模式为单线程模式.参数必须为NULL.这是关于OLE和COM的问题. Co ...